Fandom

Science Wiki

Βρανική Κοσμολογία

63.285pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Βρανική Κοσμολογία

Brane Cosmology


Physics-Atom-01-goog.jpg

Φυσική
Φυσικοί Γης
Επιστημονικοί Κλάδοι Φυσικής
Νόμοι Φυσικής
Θεωρίες Φυσικής
Πειράματα Φυσικής
Παράδοξα Φυσικής

D-branes-01-goog.jpg

Χορδοθεωρία Μεμβρανοθεωρία Βρανική Κοσμολογία Πολυδιαστατική Φυσική Θεωρία Παντός
Πολυσύμπαν Σύμπαν Πολυδιάστατος Χώρος Χωροχρόνος
Κβαντική Χορδή Κβαντική Μεμβράνη Βράνη Κοσμική Χορδή ΥπερχορδήΥπερσυμμετρία
Βαρυτόνιο (graviton) Ταχυόνιο (tachyon) Ισταντόνιο (instanton) Διλατόνιο (dilaton) Υποθετικά Σωματίδια
Υπερβαρύτητα Κβαντική Βαρύτητα Πολυσυμπαντικές Θεωρίες Χορδιακές Θεωρίες
Ελαστική Χορδή Ελαστική Μεμβράνη Στάσιμο Κύμα

- Είναι ένας νέος κλάδος της Κοσμολογίας που στηρίζεται στην Χορδιακή Θεωρία.

ΕισαγωγήEdit

Universe01-goog.jpg

Μία περιοχή του Σύμπαντος

Ποτέ στο παρελθόν οι κοσμολόγοι δεν έχουν βρεθεί σε τόσο μεγάλη σύγχυση όσο μετά την ανακάλυψη ότι το Σύμπαν διαστέλλεται με επιταχυνόμενο ρυθμό. Όταν οι αστρονόμοι ήρθαν για πρώτη φορά αντιμέτωποι με το πρόβλημα της κοσμικής επιτάχυνσης, η πρώτη αντίδραση ήταν να την αποδώσουν στην Κοσμολογική Σταθερά. Η σταθερά αυτή αντιπροσωπεύει την ενέργεια που υπάρχει στον κενό χώρο. Υπολογίζεται δε ότι είναι ισοδύναμη με πυκνότητα μάζας 10-26kg/m3. Το πρόβλημα με αυτήν είναι όμως ότι είναι πολύ μικρή για να εξηγήσει την κοσμική ιστορία του Σύμπαντος.

Κοσμικός ΠληθωρισμόςEdit

Για να υπερκεράσουν το πρόβλημα, πολλοί φυσικοί πρότειναν ότι η επιτάχυνση δεν οφείλεται στην ενέργεια του κενού Χώρου αλλά σε ένα πεδίο που υπάρχει παντού μέσα στο Χωρόχρονο. Η δυναμική ενέργεια μερικών πεδίων που πληρούν ομογενώς το χώρο, μπορεί να δρα παρόμοια με την κοσμολογική σταθερά. Ένα τέτοιο πεδίο που προτάθηκε είναι το "Πληθωριστικό Πεδίο" (inflaton), με το οποίο μάλιστα εξηγούν την φοβερή επιτάχυνση που επικράτησε στις αρχικές στιγμές του Σύμπαντος σύμφωνα με την πληθωριστική θεωρία. Ίσως ένα παρόμοιο πεδίο να προκαλεί την επιτάχυνση και σήμερα.

ΠεμπτουσίαEdit

Μια άλλη πρόταση για την εξήγηση της επιτάχυνσης φέρει το εξωτικό όνομα της πεμπτουσίας. Όπως και η Κοσμολογική Σταθερά φαίνεται να έχει μικρή τιμή, αλλά οι οπαδοί της λένε ότι είναι ευκολότερο μια δυναμική ποσότητα όπως η πεμπτουσία να αποκτήσει τη σωστή τιμή, παρά μια στατική ποσότητα όπως η ενέργεια κενού.

Και οι δύο προτάσεις ανήκουν στην κατηγορία αυτών που ονομάζονται Σκοτεινή Ενέργεια.

Πρόσθετες Ελλειπτικές ΔιαστάσειςEdit

Μια άλλη εναλλακτική εξήγηση έρχεται από τους φυσικούς εκείνους που πιστεύουν στις θεωρίες περισσοτέρων διαστάσεων. Οι θεωρίες αυτές επεμβαίνουν κατευθείαν στον τρόπο με τον οποίο συμπεριφέρεται η βαρύτητα. Οι θεωρίες αυτές έχουν την καταγωγή τους στη θεωρία χορδών.

Στη συνήθη θεωρία χορδών όμως οι επιπλέον διαστάσεις είναι περιτυλιγμένες σε πεπερασμένους μικροσκοπικούς κύκλους. Οι κύκλοι αυτοί είναι της κλίμακας Planck, δηλαδή 10-35 m. Σε τέτοιες μικροσκοπικές κλίμακες αναμένεται να έχουν αποτελέσματα επί της βαρύτητας, σε μακροσκοπικές κλίμακες όμως συμπαντικών διαστάσεων η αλληλεπίδρασή τους στη βαρύτητα θα είναι αμελητέα.

Από την άλλη μεριά αν υπάρχουν πρόσθετες διαστάσεις σε Συμπαντική κλίμακα τότε η επίδρασή τους στους ίδιους τους νόμους της βαρύτητας θα είναι προφανής.

Πράγματι, τόσο στην Κλασσική Νευτώνεια θεωρία, όσο και στην Γενική Σχετικότητα, ισχύει για την βαρύτητα ο νόμος του αντιστρόφου τετραγώνου. Ο νόμος αυτός είναι απόρροια του νόμου του Gauss για τις βαρυτικές δυναμικές γραμμές. Η ένταση δηλαδή της βαρύτητας καθορίζεται από την πυκνότητα των δυναμικών γραμμών, και καθώς η απόσταση αυξάνει, οι δυναμικές γραμμές απλώνονται σε όλο και μεγαλύτερες συνοριακές επιφάνειες. Στον τρισδιάστατο χώρο η συνοριακή επιφάνεια είναι δισδιάστατη και το εμβαδό της αυξάνει με το τετράγωνο της απόστασης.

Αν όμως ο Χώρος είναι τετραδιάστατος, η συνοριακή επιφάνεια θα ήταν ένας τρισδιάστατος όγκος, του οποίου το μέγεθος αυξάνει με τον κύβο της απόστασης. Στην περίπτωση αυτή η πυκνότητα των δυναμικών γραμμών θα μειωνόταν με τον κύβο της απόστασης. Η βαρύτητα συνεπώς τότε θα ήταν ασθενέστερη απ' ότι στον τρισδιάστατο κόσμο. Σε κοσμολογική κλίμακα τότε αποδεικνύεται ότι η εξασθένιση της βαρύτητας θα μπορούσε να οδηγήσει σε επιτάχυνση της διαστολής όπως θα δείξουμε παρακάτω.

Βαρυτική ΕξασθένισηEdit

Η κλείδα για το νόμο της βαρύτητας είναι ότι η έντασή της εξασθενίζει με την απόσταση διότι απλώνεται σε όλο και μεγαλύτερη επιφάνεια καθώς απομακρυνόμαστε από την πηγή της. Αυτό ισχύει όσες και αν είναι οι διαστάσεις του Κόσμου μας.

Σύμπαν με 2 διαστάσειςEdit

Το σύνορο είναι μια γραμμή και μεγαλώνει ανάλογα με την απόσταση διάδοσης στον άξονα x. Έτσι η ένταση της βαρύτητας ελαττώνεται αντίστροφα ανάλογα με την απόσταση διάδοσης.

Το βάρος ενός ανθρώπου 100kg θα ήταν τότε στην επιφάνεια της Γης:
Β = 1045 Nt.

Σύμπαν με 3 διαστάσεις=Edit

Το σύνορο είναι 2-διάστατο και η βαρύτητα μειώνεται αντιστρόφως ανάλογα με το τετράγωνο της απόστασης. Τα σώματα σε μια συγκεκριμένη απόσταση είναι πιο ελαφρά απ' ότι σε 2 διαστάσεις.

Το βάρος ενός ανθρώπου 100kg θα ήταν τότε στην επιφάνεια της Γης:
Β = 103 Nt.

Σύμπαν με 4 διαστάσειςEdit

Εδώ η κατάσταση είναι δύσκολο να απεικονιστεί αλλά εφαρμόζονται οι ίδιοι νόμοι. Το σύνορο είναι 3-διάστατη επιφάνεια, και η βαρύτητα μειώνεται αντιστρόφως ανάλογα με τον κύβο της απόστασης. Τα αντικείμενα είναι πιο ελαφρά και από τις 3 διαστάσεις.

  • Το βάρος ενός ανθρώπου 100kg θα ήταν τότε στην επιφάνεια της Γης:
Β = 10-35 Nt.

Σύμπαν με Πρόσθετες ΔιαστάσειςEdit

Αν όμως η βαρύτητα είναι ελεύθερη να κινείται στις επιπλέον διαστάσεις, γιατί δεν παρατηρούμε αλλοίωση των νόμων της βαρύτητας και στα φαινόμενα όπως η κίνηση μιας μπάλας ή η έλξη του Ήλιου με τη Γη;

Πρόσθετες Υπερβολικές ΔιαστάσειςEdit

Μια ενδιαφέρουσα απάντηση στο ερώτημα αυτό προτάθηκε το 1999, και λέει ότι όλες οι διαστάσεις, ακόμη και οι επιπλέον είναι απείρου μεγέθους.

Το παρατηρήσιμο Σύμπαν είναι μια τρισδιάστατη επιφάνεια ή μια βράνη όπως αποκαλείται όταν ανήκει σε ένα χώρο περισσοτέρων διαστάσεων. Η συνήθης Ύλη είναι προσκολλημένη επάνω στη βράνη αυτή, αλλά μερικές δυνάμεις όπως η βαρύτητα μπορούν να δραπετεύσουν από την βράνη.

Η βαρύτητα έχει την ιδιότητα αυτή διότι διαφέρει θεμελιωδώς από τις άλλες δυνάμεις. Σύμφωνα με την κβαντική θεωρία πεδίου η βαρύτητα έχει ως σωματίδια φορείς τα βαρυτόνια. Η βαρυτική έλξη εξηγείται με την ανταλλαγή βαρυτονίων μεταξύ δύο σωμάτων, όπως η ηλεκτρική και η μαγνητική δύναμη εξηγείται με ανταλλαγή φωτονίων μεταξύ φορτισμένων σωματίων.

Όταν η βαρύτητα είναι στατική αυτά τα βαρυτόνια είναι "εικονικά" - αν και τα αποτελέσματά τους είναι μετρήσιμα, τα ίδια δεν μπορούν να παρατηρηθούν ως ανεξάρτητα σωματίδια - όπως ακριβώς και τα εικονικά φωτόνια που ανταλλάσσονται μεταξύ δύο ακίνητων φορτισμένων σωματίων δεν μπορούν να παρατηρηθούν. Ο Ήλιος διατηρεί σε τροχιά τη Γη επειδή εκπέμπει εικονικά βαρυτόνια τα οποία απορροφά η Γη.

Τα πραγματικά ή παρατηρήσιμα βαρυτόνια αντιστοιχούν στα βαρυτικά κύματα τα οποία εκπέμπονται όταν μεταβάλλεται η καμπύλωση περιοχών του Χωροχρόνου.

Τα βαρυτόνια όπως και τα άλλα σωματίδια, η θεωρία χορδών τα αντιμετωπίζει ως τρόπους ταλάντωσης χορδών. Αλλά ενώ το ηλεκτρόνιο, το πρωτόνιο, και το φωτόνιο είναι ταλαντώσεις χορδών με ανοικτά άκρα, όπως οι χορδές του βιολιού, το βαρυτόνιο είναι ταλάντωση μιας χορδής-βρόχου, όπως τα λάστιχα που τυλίγουμε πακέτα.

Οι θεωρητικοί έχουν δείξει ότι τα άκρα των ανοικτών χορδών δεν είναι ελεύθερα, είναι προσκολλημένα σε μια βράνη. Αν προσπαθήσουμε να τραβήξουμε μια ανοικτή χορδή έξω από τη βράνη, αυτή θα τεντώσει όπως η ελαστική χορδή, αλλά θα παραμείνει κολλημένη στη βράνη. Αντίθετα, οι κλειστές χορδές όπως τα βαρυτόνια δεν μπορούν να μείνουν προσκολλημένες στη βράνη. Είναι ελεύθερες να εξερευνήσουν τον πλήρη 10-διάστατο χώρο.

Για να είμαστε ακριβείς τα βαρυτόνια δεν έχουν πλήρη ελευθερία. Αν είχαν, ο καθιερωμένος νόμος της βαρύτητας θα αποτύγχανε παταγωδώς. Οι Lisa Randall του πανεπιστημίου Harvard και Raman Sundrum του πανεπιστημίου Johns Hopkins, που πρότειναν το μοντέλο των επιπλέον διαστάσεων απείρου μεγέθους, πρότειναν ότι τα βαρυτόνια υπόκεινται σε περιορισμούς διότι οι επιπλέον διαστάσεις, αντίθετα με τις συνηθισμένες, είναι πολύ ισχυρά καμπυλωμένες - δημιουργώντας μια κοιλάδα με πολύ απότομα τοιχώματα - και εμποδίζουν τα βαρυτόνια να διαφύγουν μακριά.

Επειδή οι πρόσθετες διαστάσεις είναι ισχυρά καμπυλωμένες, ο όγκος τους είναι πρακτικά πεπερασμένος, έστω και αν το μέγεθος των διαστάσεων αυτών είναι άπειρο.

Μπορούμε να παρομοιάσουμε την κατάσταση αυτή με ένα ποτήρι του τζιν, το οποίο έχει άπειρο βάθος αλλά η διατομή του μικραίνει αντιστρόφως ανάλογα με το βάθος του. Για να γεμίσουμε αυτό το ποτήρι χρειαζόμαστε μια πεπερασμένη ποσότητα τζιν. Εξαιτίας της ισχυρής καμπυλότητας του ποτηριού, ο όγκος του είναι κυρίως συγκεντρωμένος κοντά στο στόμιό του. Η εικόνα αυτή μοιάζει με αυτό που συμβαίνει στο σενάριο Randall-Sundrum.

Ο όγκος του χώρου των πρόσθετων διαστάσεων είναι συγκεντρωμένος γύρω από τη βράνη. Συνεπώς ένα βαρυτόνιο αναγκάζεται να περάσει το μεγαλύτερο μέρος του χρόνου κοντά στη βράνη. Η πιθανότητα να βρούμε το βαρυτόνιο αυτό σε κάποια απόσταση από τη βράνη, ελαττώνεται γρήγορα με την αύξηση της απόστασης από τη βράνη. Στη γλώσσα της κβαντικής φυσικής λέμε ότι η κυματοσυνάρτηση του βαρυτονίου έχει το μέγιστό της επάνω στη βράνη.

Αν και η ιδέα του μοντέλου αυτού είναι διαφορετική από τις κλειστές κυκλικές διαστάσεις πολύ μικρής κλίμακας της θεωρίας χορδών, τα συμπεράσματά της είναι στην ουσία παρόμοια. Και τα δύο μοντέλα αλλάζουν το νόμο της βαρύτητας σε μικρές μόνο αποστάσεις, και έτσι δεν μπορούν να εξηγήσουν την επιτάχυνση που εκδηλώνεται σε πολύ μεγάλες κλίμακες αποστάσεων.

Πρόσθετες Ευθύγραμμες ΔιαστάσειςEdit

Μια τρίτη προσέγγιση προβλέπει την μεταβολή του νόμου της βαρύτητας σε κοσμολογικές κλίμακες και εξηγεί την επιτάχυνση, χωρίς να χρειάζεται να καταφύγουμε στη Σκοτεινή Εενέργεια. Προτάθηκε το 2000 από τους Gregory Gabadadze, Massimo Porrati και Georgi Dvali, και θεωρεί ότι οι επιπλέον διαστάσεις, σαν τις συνηθισμένες διαστάσεις που βλέπουμε γύρω μας δεν είναι ούτε κλειστές συμπαγείς και μικροσκοπικές, αλλά ούτε και ισχυρά καμπυλωμένες.


Βράνες και ΒαρυτόνιαEdit

Brane03-goog.jpg

Υλικά σωματίδια (ανοικτές χορδές) και βαρυτόνια (κλειστές χορδές)

Τα βαρυτόνια δεν είναι τελείως ελεύθερα να πηγαίνουν όπου θέλουν. Καθώς εκπέμπονται από τα άστρα και τα άλλα αντικείμενα επί της βράνης, μπορούν να διαφύγουν στις επιπλέον διαστάσεις, αλλά μόνον όταν ταξιδεύσουν πέρα από μια κρίσιμη απόσταση.

Τα βαρυτόνια συμπεριφέρονται όπως ο ήχος σε ένα μεταλλικό φύλλο. Αν κτυπήσουμε το φύλλο με ένα σφυρί παράγεται ένα Ηχητικό Κύμα, το οποίο διαδίδεται πάνω στην επιφάνεια του φύλλου. Αλλά η διάδοση του ήχου δεν είναι ακριβώς δισδιάστατη. Μέρος της ενέργειας χάνεται στον περιβάλλοντα αέρα. Κοντά στη θέση που χτυπήσαμε με το σφυρί, η απώλεια αυτή της ενέργειας είναι αμελητέα. Πιο μακριά όμως γίνεται σημαντική.

Αυτή η διαρροή έχει ένα σημαντικό αποτέλεσμα στη βαρυτική δύναμη μεταξύ αντικειμένων που απέχουν περισσότερο από την κρίσιμη απόσταση. Τα εικονικά βαρυτόνια εξερευνούν κάθε δυνατή πορεία μεταξύ των αντικειμένων, και η διαρροή ανοίγει ένα τεράστιο αριθμό διαδρομών στις επιπλέον διαστάσεις, πράγμα που φέρνει αλλαγή στο νόμο της βαρύτητας όπως εξηγήθηκε παραπάνω. Τα πραγματικά βαρυτόνια που δραπετεύουν από την βράνη, απλά χάνονται για πάντα, και για μας που παραμένουμε κολλημένοι πάνω στη βράνη, ομοιάζει ως να εξαφανίστηκαν τα βαρυτόνια αυτά.

Οι επιπλέον διαστάσεις αποκαλύπτονται επίσης στις πολύ μικρές κλίμακες αποστάσεων, όπως ακριβώς συμβαίνει και με τις συμπαγοποιημένες διαστάσεις της θεωρίας χορδών και με το σενάριο Randall-Sundrum.

Στις ενδιάμεσες αποστάσεις (μεγαλύτερες από τα μεγέθη των χορδών αλλά μικρότερες από την απόσταση διαρροής) τα βαρυτόνια είναι 3-διάστατα και υπακούουν πιστά στο νόμο της βαρύτητας όπως τον γνωρίζουμε.

Το κλειδί στο σενάριο αυτό είναι η ίδια η βράνη. Είναι από μόνη της ένα υλικό αντικείμενο, και η βαρύτητα διαδίδεται επάνω σε αυτήν με διαφορετικό τρόπο από ότι στον χώρο των άλλων διαστάσεων που την περιβάλλει.

Ο λόγος είναι ότι τα συνηθισμένα σωματίδια όπως το ηλεκτρόνιο και το πρωτόνιο μπορούν να υπάρχουν μόνο πάνω στη βράνη. Ακόμη και μια φαινομενικά άδεια βράνη περιέχει μια υποκείμενη μάζα από εικονικά ηλεκτρόνια, πρωτόνια, και άλλα σωματίδια τα οποία συνεχώς δημιουργούνται και καταστρέφονται με τις κβαντικές διακυμάνσεις.

Αυτά τα σωματίδια και γεννούν και αντιδρούν στη βαρύτητα. Ο χώρος γύρω από τη βράνη, αντίθετα είναι πραγματικά κενός. Τα βαρυτόνια μπορούν να ταξιδεύσουν σε αυτόν αλλά δεν βρίσκουν εκεί κάτι για να αλληλεπιδράσουν μαζί του.

Δυστυχώς, ακόμη και αν υπάρχουν οι νέες διαστάσεις, οι άνθρωποι δεν θα μπορέσουν να εισέλθουν σ' αυτές.

  • Τα σωμάτια από τα οποία αποτελούνται τα υλικά σώματα, (ηλεκτρόνια, πρωτόνια, νετρόνια) είναι ταλαντώσεις χορδών με ανοικτά άκρα, οι οποίες παραμένουν προσκολλημένες στην βράνη που αποτελεί τον κόσμο μας.
  • Τα βαρυτόνια είναι ταλαντώσεις χορδών με κλειστά άκρα, τα οποία μπορούν να ξεφύγουν από την βράνη του κόσμου μας.

Ηλεκτρική Πόλωση ΔιηλεκτρικούEdit

Κάτι ανάλογο είναι ένα διηλεκτρικό υλικό, όπως το πλαστικό, το κεραμικό ή και το καθαρό νερό. Το υλικό αυτό αντίθετα με το κενό, περιέχει ηλεκτρικά φορτισμένα σωματίδια τα οποία αποκρίνονται στην επίδραση ηλεκτρικού πεδίου. Αν και τα ηλεκτρικά φορτισμένα αυτά σωματίδια δεν μπορούν να διασχίσουν το διηλεκτρικό υλικό, μπορούν να ανακατανεμηθούν εντός αυτού. Αν εφαρμόσουμε ένα Ηλεκτρικό Πεδίο, το υλικό πολώνεται ηλεκτρικά.

Αυτό π.χ. στο νερό σημαίνει ότι τα μόριά του περιστρέφονται κατά τέτοιο τρόπο ώστετα θετικά τους άκρα (τα δύο άτομα υδρογόνου) να δείχνουν προς μια κατεύθυνση, και τα αρνητικά άκρα (τα άτομα οξυγόνου) να δείχνουν προς την αντίθετη. Στο χλωριούχο νάτριο, τα θετικά ιόντα νατρίου και τα αρνητικά του χλωρίου ξεχωρίζουν απομακρυνόμενα λίγο μεταξύ τους.

Τα ανακατανεμημένα φορτία δημιουργούν ένα δικό τους πολωτικό Ηλεκτρικό Πεδίο, το οποίο εν μέρει εξουδετερώνει το εξωτερικό πεδίο. Ένα διηλεκτρικό μπορεί συνεπώς να επηρεάσει τη διάδοση των φωτονίων τα οποία δεν είναι τίποτα άλλο από ταλαντούμενα ηλεκτρικά και μαγνητικά πεδία

Τα φωτόνια εισχωρούν σε ένα διηλεκτρικό, το πολώνουν και στη συνέχεια εξουδετερώνονται εν μέρει.

  • Για να συμβούν τα φαινόμενα αυτά, πρέπει τα φωτόνια να έχουν μήκη κύματος σε μια συγκεκριμένη περιοχή τιμών.
  • Τα μεγάλου μήκους κύματος (μικρής ορμής) φωτόνια είναι πολύ αδύναμα για να πολώσουν ένα διηλεκτρικό,
  • τα μικρού μήκους κύματος (υψηλής ορμής) ταλαντώνονται πολύ γρήγορα για να προλάβουν να αποκριθούν τα φορτισμένα σωμάτια.

Για το λόγο αυτό το ύδωρ είναι:

  • διαφανές στα ραδιοφωνικά μήκη κύματος τα οποία έχουν μεγάλο μήκος κύματος,
  • αδιαφανές στα μικροκύματα (με μεσαία μήκη κύματος).
  • διαφανές στο ορατό φως το οποίο έχει μικρό μήκος κύματος

Οι φούρνοι των μικροκυμάτων στηρίζονται ακριβώς στο φαινόμενο αυτό.

Βαρυτική Πόλωση ΒράνηςEdit

Παρόμοια οι κβαντικές διακυμάνσεις μετατρέπουν τη βράνη σε ένα ανάλογο ενός διηλεκτρικού. Θεωρητικά κάθε βράνη είναι πλήρης από ζεύγη εικονικών σωματιδίων με θετική και αρνητική ενέργεια.

Αν εφαρμόσουμε υποθετικά ένα εξωτερικό Βαρυτικό Πεδίο, η βράνη πολώνεται βαρυτικά. Τα σωματίδια αρνητικής ενέργειας απομακρύνονται λίγο από τα σωματίδια θετικής ενέργειας.

Ένα βαρυτόνιο, που αντιστοιχεί σε ένα ταλαντούμενο βαρυτικό πεδίο, μπορεί επίσης να πολώσει τη βράνη και στη συνέχεια η πόλωση αυτή να εξουδετερώσει τη δράση του, αν το μήκος κύματός του βρίσκεται μέσα σε κάποια όρια. Έχει υπολογισθεί ότι τα όρια αυτά είναι μεταξύ 0,1 mm (ή λιγότερο, ανάλογα με τον αριθμό των επιπλέον διαστάσεων) και 10 δισ. έτη φωτός!

Η εξουδετέρωση αυτή επηρεάζει μόνο τα βαρυτόνια που ταξιδεύουν προς και από τη βράνη. Τα βαρυτόνια όπως και τα φωτόνια, είναι εγκάρσια κύματα: ταλαντώνονται κάθετα στη διεύθυνση διάδοσής τους.

  • Ένα βαρυτόνιο που εισέρχεται ή εξέρχεται από τη βράνη, τείνει να μετατοπίσει τα σωμάτια παράλληλα στην επιφάνεια της βράνης, μια διεύθυνση στην οποία τα σωματίδια της βράνης μπορούν πράγματι να κινηθούν. Έτσι τα βαρυτόνια αυτά μπορούν πράγματι να πολώσουν τη βράνη και να εξουδετερωθούν από την πόλωση αυτή.
  • Τα βαρυτόνια όμως που κινούνται παράλληλα προς την βράνη, προσπαθούν να ωθήσουν τα σωμάτια έξω από τη βράνη, μια διεύθυνση στην οποία αυτά δεν μπορούν να κινηθούν. Τα βαρυτόνια αυτά λοιπόν δεν μπορούν να πολώσουν την βράνη. Κινούνται χωρίς να αισθανθούν την παραμικρή αντίσταση.
  • Στη πράξη τα πιο πολλά βαρυτόνια βρίσκονται μεταξύ αυτών των δύο άκρων. Ταξιδεύουν στο χώρο σε τυχαίες γωνίες ως προς την βράνη, και μπορούν να καλύψουν δισεκατομμύρια έτη φωτός πριν να εξουδετερωθούν.

Ύπαρξη Σκοτεινής ΕνέργειαςEdit

Οι Cedric Deffayet, Gabadasze και Georgi Dvali, μπόρεσαν να δείξουν ότι οι επιπλέον διαστάσεις όχι μόνο περιορίζουν την ένταση της βαρύτητας, αλλά επίσης αναγκάζουν την Κοσμική Διαστολή να επιταχύνεται, χωρίς να χρειάζεται να παραδεχτούμε την ύπαρξη σκοτεινής ενέργειας. Μπαίνουμε στον πειρασμό να πούμε ότι "η εξασθένιση της βαρυτικής κόλας" η οποία καθυστερεί τη διαστολή, η διαρροή των βαρυτονίων ελαττώνει την επιβράδυνση τόσο πολύ ώστε να γίνει αρνητική, δηλαδή να μεταραπεί σε επιτάχυνση. Αλλά το φαινόμενο αυτό έχει πολλές λεπτομέρειες. Έχει να κάνει με τον τρόπο που η διαροή των βαρυτονίων αλλάζει την Γενική Σχετικότητα.

Η κεντρική ιδέα στη θεωρία του Einstein είναι ότι η βαρύτητα είναι το αποτέλεσμα της καμπυλότητας του χωροχρόνου, η οποία με τη σειρά της σχετίζεται με την πυκνότητα της ύλης και της ενέργειας εντός του χωροχρόνου. Ο Ήλιος έλκει τη Γη προκαλώντας παραμόρφωση στο χωροχρόνο γύρω του. Αν δεν υπάρχει ύλη και ενέργεια δεν υπάρχει παραμόρφωση και βαρύτητα. Στις ανώτερες όμως διαστάσεις, η σχέση μεταξύ καμπυλότητας και πυκνότητας αλλάζει. Οι επιπλέον διαστάσεις εισάγουν ένα διορθωτικό όρο στις εξισώσεις, ο οποίος μας βεβαιώνει ότι η καμπυλότητα μιας άδειας βράνης δεν είναι μηδέν. Ως αποτέλεσμα της διαρροής βαρυτονίων, προκαλείται μια τάση στη βράνη, η οποία δημιουργεί μια μη αναστρέψιμη καμπυλότητα στη βράνη μη εξαρτώμενη από την ενέργεια και την ύλη επί της βράνης.

Με την πάροδο του χρόνου, καθώς η ύλη και η ενέργεια συνεχώς αραιώνονται, η καμπυλότητα που αυτές προκαλούν ελαττώνεται κι έτσι η απομένουσα καμπυλότητα από τη διαρροή βαρυτονίων γίνεται προοδευτικά όλο και πιο σημαντική. Η καμπυλότητα του Σύμπαντος τείνει σε μια σταθερή τιμή. Στο ίδιο αποτέλεσμα θα καταλήγαμε αν το σύμπαν ήταν γεμάτο με μια ουσία που δεν αραιωνόταν με τον χρόνο. Αυτή η ουσία είναι η κοσμολογική σταθερά που χρησιμοποιείται για να εξηγηθεί η επιτάχυνση της διαστολής. Έτσι λοιπόν βλέπουμε ότι η απομένουσα καμπυλότητα της βράνης δρα σαν μια κοσμολογική σταθερά η οποία επιταχύνει την κοσμική διαστολή.


Μαζικά ΒαρυτόνιαEdit

Η θεωρία που εκτέθηκε παραπάνω δεν είναι η μοναδική που προσπαθεί να λύσει το πρόβλημα της κοσμικής επιτάχυνσης με αλλαγή του νόμου της βαρύτητας στις μεγάλες αποστάσεις. Το 2002 οι Thibault Damour και Αντώνιο Παπάζογλου του Ινστιτούτου Επιστημονικών Μελετών στη Γαλλία, και ο Ian Kogan του πανεπιστημίου της Οξφόρδης πρότειναν ότι υπάρχει και ένα άλλο είδος βαρυτονίων, τα οποία αντίθετα από τα συνήθη βαρυτόνια έχουν μια μικρή μάζα. Όπως γνωρίζουν οι φυσικοί, αν τα βαρυτόνια έχουν μάζα δεν ισχύει πια ο νόμος του αντιστρόφου τετραγώνου. Είναι ασταθή και καθώς διασχίζουν το χώρο διασπώνται βαθμιαία, με λίγο-πολύ τα ίδια αποτελέσματα όπως και στη διαρροή βαρυτονίων: Τα βαρυτόνια που ταξιδεύουν σε τεράστιες αποστάσεις εξαφανίζονται, η βαρύτητα γίνεται ασθενέστερη και η κοσμική διαστολή επιταχύνεται.

Τροποποίηση Γενικής ΣχετικότηταςEdit

Οι Sean Carroll, Vikram Duvvuri και Michael Turner του πανεπιστημίου του Chicago και ο Mark Trodden του πανεπιστημίου Syracuse έχουν τροποποιήσει τις εξισώσεις του Einstein στις 3 διαστάσεις εισάγοντας μικρούς όρους οι οποίοι είναι αντίστροφα ανάλογοι με την καμπυλότητα του χωροχρόνου. Τέτοιοι όροι θα ήταν αμελητέοι στο αρχικό Σύμπαν, αλλά θα προκαλούσαν επιτάχυνση στα μετέπειτα στάδια.

Άλλες ερευνητικές ομάδες έχουν επίσης προτείνει την τροποποίηση του νόμου της βαρύτητας, αλλά οι προτάσεις τους δεν εξαλείφουν την ανάγκη για την εισαγωγή της σκοτεινής ενέργειας.

Πειραματική επαλήθευσηEdit

Οι παρατηρήσεις θα δείξουν ποια εκ των υποθέσεων θα δικαιωθεί. Η παρατήρηση των σούπερ νόβα αποτελεί ένα κριτήριο. Η μετάβαση από την εποχή της επιβράδυνσης στην εποχή της επιτάχυνσης είναι διαφορετική στο σενάριο της διαρροής βαρυτονίων από τα άλλα σενάρια που περιλαμβάνουν την Σκοτεινή Ενέργεια.

Οι πλανητικές κινήσεις μπορούν να αποτελέσουν ένα ακόμα εμπειρικό τεστ. Οι Andrei Gruzinov, Matias Zaldarriaga του πανεπιστημίου της Νέας Υόρκης και ο Georgi Dvali υπολόγισαν ότι οι πρόσθετες διευθύνσεις ταλάντωσης των βαρυτονίων στις επιπλέον διαστάσεις θα προκαλούσαν μια μικρή αργή μετάπτωση στην τροχιά της Σελήνης. Κάθε φορά που η Σελήνη συμπληρώνει μια περιφορά, η κοντινότερη απόστασή της από τη Γη θα μετατοπίζεται περίπου κατά ένα τρισεκατομμυριοστό της μοίρας ή περίπου 0,5mm. Η κίνηση αυτή μπορεί να γίνει αντιληπτή από πειράματα με λέιζερ που ανακλώνται επί της Σελήνης σε κάτοπτρα που άφησαν εκεί οι αστροναύτες του Απόλλωνα. Τα τωρινά πειράματα μπορούν να καταγράψουν μεταπτώσεις μέχρι 1cm. Ο Eric Adelberger και οι συνεργάτες του στο πανεπιστήμιο της Washington πρότειναν τη χρήση πιο ισχυρών laser για να δεκαπλασιάσουν την ευαισθησία της μέτρησης. Διαστημικά παρατηρητήρια θα μπορούσαν επίσης να κοιτάξουν για παρόμοια μετάπτωση στην τροχιά του Άρη.

ΒιβλιογραφίαEdit

  1. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. Brian Greene. W. W. Norton, 2003.
  2. An Alternative to Compactification. Lisa Randall and Raman Sundrum in Physical Review Letters, Vol. 83, No. 23, page 4690–4693; December 6, 1999. Available online at arXiv.org/abs/hep-th/9906064
  3. Accelerated Universe from Gravity Leaking to Extra Dimensions. Cιdric Deffayet, Gia Dvali and Gregory Gabadadze in Physical Review D, Vol. 65, paper number 044023; 2002. arXiv.org/abs/astro-ph/0105068
  4. The Accelerated Universe and the Moon. Gia Dvali, Andrei Gruzinov and Matias Zaldarriaga in Physical Review D, Vol. 68, paper number 024012; 2003. arXiv.org/abs/hep-ph/0212069
  5. Tests of the Gravitational Inverse-Square Law. E. G. Adelberger, B. R.Heckel and A. E. Nelson in Annual Review of Nuclear and Particle Science,Vol. 53, pages 77–121; December 2003. arXiv.org/abs/hep-ph/0307284

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki