FANDOM


Γεωμετρικόν Στοιχείον

geometric element, geometric element


Dimensions-02-goog.jpg

Γεωμετρία
Χωρόχρονος Χώρος Χρόνος
Διάσταση Μήκος Πλάτος Ύψος
Εμβαδό Όγκος Υπερεμβαδό
ΣημείοΚαμπύληΕπιφάνειαΧωροπεριοχή
Κοσμικό Σημείο Κοσμική ΚαμπύληΒράνη

Dimension-01-goog.jpg

Οι τρείς Διαστάσεις

Frame-02-wik.png

Καρτεσιανό Σύστημα Συντεταγμένων

Surface-01-goog.png

Επιφάνεια Γεωμετρία Μαθηματικά

Function-Surface-01-goog.gif

Συνάρτηση Επιφάνεια

- Ένα Στοιχείο.

ΕτυμολογίαEdit

Το όνομα "Γεωμετρικό" σχετίζεται ετυμολογικά με την λέξη "γεωμετρία".

ΕισαγωγήEdit

A geometric element is an element in Space (plane, line, point, or a combination of these) about which a symmetry operation is performed.

Geometric elements are classified on the basis of the dimensionality n of the space on which they act.

The upper limit on the dimensionality of the symmetry element being (n-1).

One-dimensional spaceEdit

The only geometric element that exists in this Space is the reflection point (mirror point).

Two-dimensional spaceEdit

In this Space, two types of geometric elements exist: zero and one-dimensional:

  • rotations points
  • reflection lines (mirror lines)

The inversion centre (point) does not exist in spaces of even number of dimensions.

Three-dimensional spaceEdit

In this Space, three types of geometric elements exist,

zero, one- and two-dimensional:

  • inversion centres
  • rotations axes
  • reflection planes (mirror planes)

For roto-inversion operations, the geometric element is a combination of a line, about which the rotation is performed, and a point (inversion point) with respect to which the inversion is performed.

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

  • Wolff, P. M. de, Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer, A. M., Senechal, M., Shoemaker, D. P., Wondratschek, H., Hahn, Th., Wilson, A. J. C. & Abrahams, S. C. (1989). Definition of symmetry elements in space groups and point groups. Report of the International Union of Crystallography Ad-hoc Committee on the Nomenclature of Symmetry. Acta Cryst., A 45, 494−499.

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on FANDOM

Random Wiki