## FANDOM

64.284 Pages

Γραμμική Διαφορική Εξίσωσις

- Είδος Διαφορικής Εξίσωσης

## ΟρισμόςEdit

A differential equation is said to be linear if F can be written as a linear combination of the derivatives of y:

$\frac{d^n}{dx^n} \psi = \sum_{i=0}^{n-1} a_i(x) \frac{d^i}{dx^i} \psi + r(x)$

where ai(x) and r(x) continuous functions in x.[1][2][3] Non-linear equations cannot be written in this form. The function r(x) is called the source term, leading to two further important classifications:[4][5]

## Απλή ΠερίπτωσηEdit

The equation that describes exponential decay is

$\frac{dN}{dt} = -\lambda N$

or, by rearranging,

$\frac{dN}{N} = -\lambda dt.$

Integrating, we have

$\ln N = -\lambda t + C \,$

where C is the constant of integration, and hence

$N(t) = e^C e^{-\lambda t} = N_0 e^{-\lambda t} \,$

where the final substitution, N0 = eC, is obtained by evaluating the equation at t = 0, as N0 is defined as being the quantity at t = 0.

This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay. The notation λ for the decay constant is a remnant of the usual notation for an eigenvalue. In this case, λ is the eigenvalue of the opposite of the differentiation operator with N(t) as the corresponding eigenfunction. The units of the decay constant are s−1.

## ΕισαγωγήEdit

Είναι μία Διαφορική Εξίσωση του τύπου

Ly = f,
όπου
ο Διαφορικός Τελεστής L is a Γραμμικός Τελεστής,
y is the unknown function, and
the right hand side f is a given function.

The linearity condition on L rules out operations such as taking the square of the derivative of y; but permits, for example, taking the second derivative of y. Therefore a fairly general form of such an equation would be

$a_n D^n y(x) + a_{n-1}(x)D^{n-1} y(x) + \cdots + a_1(x) D y(x) + a_0(x) y(x) = f(x)$
where D is the differential operator d/dx (i.e. Dy = y' , D²y = y",... ), and the ai are given functions. Such an equation is said to have order n, the index of the highest derivative of f that is involved. (Assuming a possibly existing coefficient an of this derivative to be non zero, it is eliminated by dividing through it. In case it can become zero, different cases must be considered separately for the analysis of the equation.)

## ΙστογραφίαEdit

Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Επίσης,
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)