Fandom

Science Wiki

Θεώρημα Cayley

63.276pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Θεώρημα Cayley

Cayley's Theorem, Theorems


Theorems-01-goog.jpg

Μαθηματικά
Μαθηματικό Θεώρημα Μαθηματικά Θεωρήματα Μαθηματική Εικασία Μαθηματικές Εικασίες Εξίσωση Εξισώσεις Μαθηματικό Αξίωμα Μαθηματικά Αξιώματα
Νόμοι Φυσικής
Αριθμός Αριθμοί Μαθηματικός Χώρος Μαθηματικοί Χώροι

- Θεώρημα των Μαθηματικών.

ΕτυμολογίαEdit

Πρότυπο:Theorems

Η ονομασία "Θεώρημα Cayley" σχετίζεται ετυμολογικά με το όνομα του μαθηματικού " Arthur Cayley".

ΠεριγραφήEdit

In group theory, Cayley's theorem states that every group G is isomorphic to a subgroup of the symmetric group acting on G.

This can be understood as an example of the group action of G on the elements of G.

A permutation of a set G is any bijective function taking G onto G; and the set of all such functions forms a group under function composition, called the symmetric group on G, and written as Sym(G).

Cayley's theorem puts all groups on the same footing, by considering any group (including infinite groups such as (R, +)) as a permutation group of some underlying set. Thus, theorems that are true for subgroups of permutation groups are true for groups in general.

Nevertheless, Alperin and Bell note that "in general the fact that finite groups are imbedded in symmetric groups has not influenced the methods used to study finite groups".

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki