Fandom

Science Wiki

Κβαντική Χημεία

63.273pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Κβαντική Χημεία

Quantum Chemistry


Physics-Atom-01-goog.jpg

Φυσική
Φυσικοί Γης
Επιστημονικοί Κλάδοι Φυσικής
Νόμοι Φυσικής
Θεωρίες Φυσικής
Πειράματα Φυσικής
Παράδοξα Φυσικής

Είναι ένας Διεπιστημονικός Κλάδος της Χημείας και της Κβαντικής Φυσικής.

ΠεριγραφήEdit

Η Κβαντική Χημεία είναι η εφαρμογή της Κβαντικής Θεωρίας στα προβλήματα της Χημείας.

Η περιγραφή της ηλεκτρονιακής συμπεριφοράς ατόμων και μορίων αποτελεί ένα παράδειγμα εφαρμογής της Κβαντικής Χημείας.

Ιστορία Edit

Η πρώτη σύνδεση της (παλαιάς) Κβαντικής Μηχανικής με τη Χημεία έγινε το 1913, οπότε και εμφανίσθηκε η εργασία του Δανού Φυσικού Bohr στην επιθεώρηση Philosophical Magazine, η οποία περιέγραφε επιτυχώς τη δομή του ατόμου του υδρογόνου και ερμήνευε με μεγάλη ακρίβεια, ποσοτικά πλέον, τις πειραματικά παρατηρούμενες φασματικές του γραμμές διορθώνοντας όχι μόνο τις προβλέψεις, αλλά και τη λανθασμένη "Φυσική" του πλανητικού προτύπου του ατόμου το οποίο είχε εισαγάγει ο Έρνεστ Rutherford (υπό τον οποίον ο Bohr εργαζόταν εκείνη την εποχή στο Μάντσεστερ της Αγγλίας) δύο έτη ενωρίτερα, το 1911).

Επειδή οι κβαντομηχανικές μελέτες επί ατόμων θεωρούνται ότι βρίσκονται στη διαχωριστική γραμμή μεταξύ Χημείας και Φυσικής και δεν συμπεριλαμβάνονται πάντα στην Κβαντική Χημεία, αυτός που θεωρείται συχνά ως ο πρώτος πραγματικός υπολογισμός στην Κβαντική Χημεία ήταν εκείνος των Γερμανών επιστημόνων Walter Heitler και Fritz London (παρόλο που οι Heitler και London θεωρούνται γενικά ως φυσικοί) επί του μορίου του υδρογόνου2) το 1927.

Οι Heitler και London μελέτησαν δύο μόρια, το Η2 ως τυπικό μόριο με έναν ομοιοπολικό δεσμό και το He2, το διμερές του ατόμου του ηλίου ως τυπικό μόριο στο οποίο δεν υφίσταται χημικός δεσμός μεταξύ των δύο ατόμων. Οι θεωρητικοί τους υπολογισμοί προέβλεψαν επιτυχώς ότι το Η2 σχηματίζει έναν σταθερό ομοιοπολικό δεσμό, ενώ στο He2 τα δύο άτομα ηλίου απωθούνται και δεν σχηματίζουν ομοιοπολικό δεσμό.

Η μέθοδος των Heitler και London επεκτάθηκε από τους αμερικανούς χημικούς John C. Slater και Linus Pauling και ονομάστηκε "θεωρία δεσμού σθένους" (VB) ή Heitler-London-Slater-Pauling (HLSP). Σε αυτή τη μέθοδο, η προσοχή εστιάζεται πρωτίστως στις αλληλεπιδράσεις των ατόμων ανά δύο, και επομένως σχετίζεται ιδιαιτέρως με τις κλασσικές εικόνες των χημικών δεσμών μεταξύ ατόμων.

Μια εναλλακτική προσέγγιση αναπτύχθηκε από τους Friendrich Hund και Robert S. Mulliken, στην οποία τα ηλεκτρόνια περιγράφονται από μαθηματικές συναρτήσεις (μοριακά τροχιακά) οι οποίες είναι απεντοπισμένες σε όλη την έκταση του μορίου.

Κάθε μόριο αντιμετωπίζεται ως ξεχωριστή οντότητα ("ηνωμένο άτομο") αποτελούμενο από μοριακά τροχιακά στα οποία τοποθετούνται ένα–ένα τα ηλεκτρόνια. Κάθε ηλεκτρόνιο θεωρείται ότι κινείται στο Ηλεκτρικό Πεδίο το οποίο δημιουργείται λόγω της παρουσίας των πυρήνων των ατόμων και των υπολοίπων ηλεκτρονίων. Η αντιμετώπιση αυτή των μορίων έθεσε τα θεμέλια της Θεωρίας των Μοριακών Τροχιακών (Molecular orbital theory ή MO theory). Η προσέγγιση αυτή είναι λιγότερο διαισθητική στους χημικούς, αλλά δεδομένου ότι συχνά αποδεικνύεται ικανότερη στην πρόβλεψη ιδιοτήτων από τη μέθοδο VB, είναι ουσιαστικά η κύρια υπολογιστική μέθοδος στην οποία βασίζεται μεγάλο μέρος των υπολογισμών οι οποίοι εκτελούνται σήμερα.

Ηλεκτρονική Δομή Edit

Η εύρεση της ηλεκτρονικής δομής ενός ατόμου ή μορίου έχει ως πρώτο βήμα την επιλογή της Χαμιλτονιανής, δηλαδή του μαθηματικού εκείνου τελεστή ο οποίος περιγράφει τις δυνατές αλληλεπιδράσεις μεταξύ των τμημάτων (ατομικών πυρήνων και ηλεκτρονίων) του υπό μελέτη ατόμου ή μορίου. Η μορφή της Χαμιλτονιανής η οποία χρησιμοποιείται συχνότερα είναι η ηλεκτροστατική Χαμιλτονιανή, όπου ο τελεστής περιλαμβάνει όλες τις αλληλεπιδράσεις κατά Coulomb (έλξεις και απώσεις) μεταξύ ηλεκτρονίων και ατομικών πυρήνων.

Το επόμενο βήμα συνίσταται στην επίλυση της εξίσωσης Schrodinger με τη χρήση της επιλεχθείσας Χαμιλτονιανής. Προηγουμένως, σχεδόν πάντοτε επιβάλλεται η προσέγγιση Born-Οπενχάιμερ ή αλλιώς προσέγγιση των πακτωμένων πυρήνων η οποία έχει ως αποτέλεσμα την αποσύζευξη των κινήσεων των ηλεκτρονίων από τις κινήσεις των ατομικών πυρήνων. Λόγω της μεγάλης διαφοράς της πυρηνικής από την ηλεκτρονική μάζα κάθε ατόμου, αναμένεται ότι στη στιγμιαία κίνηση των ηλεκτρονίων οι πυρήνες θα κινούνται απείρως αργά, άρα θα παραμένουν ουσιαστικώς πακτωμένοι σε συγκεκριμένες θέσεις. Η εξίσωση Schrodinger επιλύεται για προκαθορισμένες θέσεις των ατόμων (προκαθορισμένη μοριακή γεωμετρία) και η υπολογισθείσα ενέργεια (E) ισούται με την ενέργεια πλήρους ιονισμού του συστήματος σε ακίνητους γυμνούς πυρήνες και ηλεκτρόνια, σε άπειρη αναμεταξύ τους απόσταση.

Σαρώνοντας όλες τις δυνατές θέσεις στο χώρο των πυρηνικών συντεταγμένων, δηλαδή όλες εκείνες τις δυνατές γεωμετρίες τις οποίες μπορεί να λάβει το υπό εξέταση μόριο, αποκαλύπτεται μια "υπερεπιφάνεια δυναμικής ενέργειας" 3Ν–6 (ή 5) διαστάσεων (Ν = αριθμός ατόμων του μορίου). Υπό την επιρροή της δυναμικής αυτής ενέργειας (δηλαδή εντός της υπερεπιφάνειας αυτής), οι πυρήνες δονούνται και περιστρέφονται (οι μεταφορικοί βαθμοί ελευθερίας έχουν απαλειφθεί λόγω αναγωγής της κινήσεως του μορίου στην κίνηση του κέντρου μάζας του). Σε ένα Διατομικό Μόριο η υπερεπιφάνεια ανάγεται σε "καμπύλη δυναμικής ενέργειας", αφού υπάρχει μία μόνο ανεξάρτητη μεταβλητή (η διαπυρηνική απόσταση).

Η γεωμετρία ισορροπίας του μορίου είναι εκείνη η γεωμετρία στην οποία το μόριο αποκτά την ελαχίστη ενέργεια. Όταν δεν εμφανίζεται ελάχιστο στην επιφάνεια, σημαίνει ότι το μοριακό σύστημα είναι μη δέσμιο.

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki