Fandom

Science Wiki

Μαγνητικός Νόμος Gauss

63.284pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Νόμος Gauss

Gauss Law


Laws-Science-01-goog.jpg

Επιστημονικός Νόμος Επιστημονικοί Νόμοι
Μαθηματικό Θεώρημα Νόμοι Μαθηματικών
Φυσικός Νόμος Νόμοι Φυσικής
Νόμοι Χημείας
Νόμοι Γεωλογίας
Νόμοι Βιολογίας
Νόμοι Οικονομίας

Science-01-goog.png

Επιστήμη Επιστήμες Φυσικές Επιστήμες Βιο-Επιστήμες Γεω-Επιστήμες Οικονομικές Επιστήμες Θεωρητικές Επιστήμες Κοινωνικές Επιστήμες Επιστήμες Υγείας
Τεχνολογία
Επιστημονικός Κλάδος Επιστημονικός Νόμος Επιστημονική Μέθοδος Επιστημονική Θεωρία Επιστημονικά Κέντρα Γης Επιστήμονες Γης

- Νόμος της Φυσικής.

- Ακριβέστερα, είναι ένας νόμος της Μαγνητοστατικής

- Χρονολογία ανακάλυψης.

ΕτυμολογίαEdit

Η ονομασία "νόμος" σχετίζεται ετυμολογικά με το όνομα του φυσικού επιστήμονα "Gauss".

ΔιατύπωσηEdit

Στη στατική περίπτωση ενός μαγνήτη, ή άλλη κατάσταση, όπου η πηγή του Μαγνητικού Πεδίου βρίσκεται σε ηρεμία σε σχέση με τον παρατηρητή, η ολοκληρωτική μορφή του νόμου του Γκάους μπορεί να αποδειχθεί χρησιμοποιώντας την αναλογία της ροής με τον αριθμό των δυναμικών γραμμών του Μαγνητικού Πεδίου που εισέρχονται και εξέρχονται από μια Γκαουσιανή Επιφάνεια.

Χρησιμοποιώντας ένα τέτοιο επιχείρημα, μπορεί να δειχθεί ότι σε όλες τις στατικές περιπτώσεις, η συνολική Μαγνητική Ροή είναι μηδενική.

Όσες δυναμικές γραμμές εισέρχονται σε μια Γκαουσιανή επιφάνεια, άλλες τόσες εξέρχονται από αυτήν, οπότε δεν περικλείεται κάποια "πηγή" του Μαγνητικού Πεδίου.

\Phi_B = \oint_S \mathbf{B} \cdot \mathrm{d}\mathbf{A} = 0

Η διαφορική μορφή αυτής της εξίσωσης, αποτελεί και μία από τις τέσσερεις Εξισώσεις Maxell, που είναι συνέπεια της μη ύπαρξης μαγνητικών μονοπόλων στη Φύση.

Διαφορική ΜορφήEdit

The differential form for Gauss's law for magnetism is:

\nabla\cdot\mathbf{B} = 0

όπου
∇• δηλώνει divergence
B είναι η Μαγνητική Πεδιακή Ένταση.

Ολοκληρωτική ΜορφήEdit

The integral form of Gauss's law for magnetism states:

 \iint\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset\!\supset \mathbf{B} \cdot d \mathbf{\Sigma} = 0

where S is any closed surface (see image right), and dA is a vector, whose magnitude is the area of an infinitesimal piece of the surface S, and whose direction is the outward-pointing surface normal (see surface integral for more details).

The left-hand side of this equation is called the net flux of the magnetic field out of the surface, and Gauss's law for magnetism states that it is always zero.

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki