FANDOM


Αναπαράστασις

Representation


Reprentations-01-goog

Μαθηματική Αναπαράσταση

Group-Theory-01-goog

Ομαδοθεωρία
Αλγεβρική Ομάδα Γενική Γραμμική Ομάδα Ορθογώνια Ομάδα Μοναδιακή Ομάδα
Μαθηματική Αναπαράσταση Μαθηματική Μήτρα

Group-Representation-01-goog

Ομαδιαία Αναπαράσταση.

Spin-Group-01-goog

Ομαδιαία Αναπαράσταση

Groups-02-goog

Ομαδιαία Αναπαράσταση

- Μία Αναπαράσταση.

ΕτυμολογίαEdit

Η ονομασία "Αναπαράσταση" σχετίζεται ετυμολογικά με την λέξη "παράσταση".

ΟρισμόςEdit

There are two ways to say what a representation is:

Πρώτος ΟρισμόςEdit

The first uses the idea of an action, generalizing the way that matrices act on column vectors by matrix multiplication.

A representation of a group G or (associative or Lie) algebra A on a vector space V is a map

 \Phi\colon G\times V \to V \quad\text{or}\quad \Phi\colon A\times V \to V

with two properties.

- First, for any g in G (or a in A), the map:

 \varphi(g) \colon V \to V  \; \; | \; v \in V \; \mapsto \Phi(g,v)\in V

is linear (over F), and similarly in the algebra cases.

- Second, if we introduce the notation g · v for Φ(g, v), then for any g1, g2 in G and v in V:

 (1)\quad e \cdot v = v
 (2)\quad g_1\cdot (g_2 \cdot v) = (g_1g_2) \cdot v
where:
e is the identity element of G and
g1g2 is product in G.

The requirement for associative algebras is analogous, except that associative algebras do not always have an identity element, in which case equation (1) is ignored.

Equation (2) is an abstract expression of the associativity of matrix multiplication. This doesn't hold for the matrix commutator and also there is no identity element for the commutator.

Hence for Lie algebras, the only requirement is that for any x1, x2 in A and v in V:

 (2')\quad x_1\cdot (x_2 \cdot v) - x_2\cdot (x_1 \cdot v) = [x_1,x_2] \cdot v

where [x1, x2] is the Lie bracket, which generalizes the matrix commutator MNNM.

Δεύτερος ΟρισμόςEdit

The second way to define a representation focuses on the map φ sending g in G to φ(g): VV, which satisfies

 \varphi(g_1 g_2) = \varphi(g_1)\circ \varphi(g_2) \quad \text{for all }g_1,g_2 \in G \,\!

and similarly in the other cases. This approach is both more concise and more abstract.

  • A representation of a group G on a vector space V is a group homomorphism φ: G → GL(V,F).
  • A representation of an associative algebra A on a vector space V is an algebra homomorphism φ: A → EndF(V).
  • A representation of a Lie algebra a on a vector space V is a Lie algebra homomorphism φ: agl(V,F).

ΑνάλυσηEdit

Ορισμοί και έννοιεςEdit

Ας είναι V ένας Διανυσματικός Χώρος πάνω σε ένα σώμα F. Για παράδειγμα, έστω ότι ο V είναι ο Rn ή ο Cn, ο καθιερωμένος n-διάστατος χώρος από στήλες διανύσματα πάνω από τους πραγματικούς ή τους μιγαδικούς αριθμούς αντίστοιχα.

Στην περίπτωση αυτή, η ιδέα της θεωρίας αναπαραστάσεων είναι να κάνει κανείς Αφηρημένη Άλγεβρα συγκεκριμένα χρησιμοποιώντας n × n μήτρες πραγματικών ή μιγαδικών αριθμών.

Υπάρχουν τρία κύρια είδη αλγεβρικών αντικειμένων για τα οποία μπορεί να γίνει: ομάδες, προσεταιριστικές άλγεβρες και άλγεβρες Lie.

  • Το σύνολο όλων των αντιστρέψιμων n × n πινάκων είναι μια ομάδα εφοδιασμένη με τον πολλαπλασιασμό πινάκων και η θεωρία αναπαραστάσεων των ομάδων αναλύει μία ομάδα περιγράφοντας ("αναπαριστώντας") τα στοιχεία της σε όρους αντιστρέψιμων πινάκων.
  • Η πρόσθεση και ο πολλαπλασιασμός πίνακα μετατρέπει το σύνολο όλων των n × n πινάκων σε προσεταιριστική άλγεβρα και ως εκ τούτου, υπάρχει μία αντίστοιχη θεωρία αναπαραστάσεων των προσεταιριστικών αλγεβρών.
  • Αν αντικαταστήσουμε τον πολλαπλασιασμό πινάκων MN με τον αντιμεταθέτη μητρών MNNM, τότε οι n × n μήτρες μετατρέπονται αντ' αυτού σε μία Lie άλγεβρα, που οδηγεί σε μία θεωρία αναπαραστάσεων αλγεβρών Lie.

Αυτό γενικεύεται σε οποιοδήποτε σώμα F και οποιονδήποτε διανυσματικό χώρο V πάνω στο F, με τις γραμμικές απεικονίσεις να αντικαθιστούν τις μήτρες και τη σύνθεσηνα αντικαθιστά τον πολλαπλασιασμό μητρών: υπάρχει μια ομάδα GL(V,F) αυτομορφισμών του V, μια προσεταιριστική άλγεβρα EndF(V) όλων των ενδομορφισμών του V, και μια αντίστοιχη Lie άλγεβρα gl(V,F).

ΟρισμόςEdit

Υπάρχουν δύο τρόποι για να πει κανείς τι είναι μια αναπαράσταση. Ο πρώτος χρησιμοποιεί την ιδέα μιας δράσης, γενικεύοντας τον τρόπο που οι μήτρες δρουν σε στήλη διανυσμάτων στον πολλαπλασιασμό πινάκων.

Μια αναπαράσταση μιας ομάδας G ή μιας άλγεβρας A (προσεταιριστικής ή lie) σε ένα διανυσματικό χώρο V είναι μία απεικόνιση

 \Phi\colon G\times V \to V \quad\acute{\eta}\quad \Phi\colon A\times V \to V

με δύο ιδιότητες. Η πρώτη, για κάθε g που ανήκει στην Ga που ανήκει στην A), η απεικόνιση

 \begin{align}\varphi(g)\colon V& \to V\\
v & \mapsto \Phi(g, v)\end{align}

είναι γραμμική (πάνω στην F). Η δεύτερη, αν εισάγουμε το συμβολισμό g·v αντί για Φ(g, v) τότε για κάθε g1, g2 που ανήκουν στην G και v που ανήκει στον V ισχύει:

 (1)\quad e \cdot v = v

 (2)\quad g_1\cdot (g_2 \cdot v) = (g_1g_2) \cdot v

όπου e είναι το ταυτοτικό στοιχείο της G και g1g2 είναι το γινόμενο στη G. Οι απαιτήσεις για προσεταιριστικές άλγεβρες είναι ανάλογες, εκτός από το γεγονός ότι οι προσεταιριστικές άλγεβρες δεν έχουν πάντοτε ένα ταυτοτικό στοιχείο, οπότε στην περίπτωση αυτή η εξίσωση (1) αγνοείται. Η εξίσωση (2) είναι μια αφηρημένη έκφραση συσχέτισης του πολλαπλασιασμού πινάκων. Για τους αντιμεταθέτες μητρών αυτό δεν ισχύει καθώς επίσης, δεν υπάρχει ταυτοτικό στοιχείο. Ως εκ τούτου, για την άλγεβρα Lie η μόνη απαίτηση είναι ότι για κάθε x1, x2 που ανήκουν στην A και v που ανήκει στον V πρέπει να ισχύει η εξίσωση:

 (2')\quad x_1\cdot (x_2 \cdot v) - x_2\cdot (x_1 \cdot v) = [x_1,x_2] \cdot v

όπου [x1, x2] είναι η αγκύλη Lie, η οποία γενικεύει τον αντιμεταθετικό πίνακα MNNM.

Ο δεύτερος τρόπος για να ορίσει κανείς μια αναπαράσταση εστιάζει στην απεικόνιση φ στέλνοντας την g που ανήκει στην G σε μία γραμμική απεικόνιση φ(g): VV, η οποία ικανοποιεί τη σχέση:

 \varphi(g_1 g_2) = \varphi(g_1)\circ \varphi(g_2),\ \gamma\iota\alpha\ \acute{o} \lambda\alpha\ \tau\alpha\ \ g_1,g_2 \in G \,\!

και παρόμοια σε άλλες περιπτώσεις. Αυτή η προσέγγιση είναι και πιο συνοπτική και πιο αφηρημένη. Από αυτήν την οπτική γωνία:

  • μια αναπαράσταση μιας ομάδας G σε ένα διανυσματικό χώρο V είναι μια ομάδα ομομορφισμών φ: G → GL(V,F)
  • μια αναπαράσταση μιας αντιμεταθετικής άλγεβρας A σε ένα διανυσματικό χώρο V είναι ένας ομομορφισμός άλγεβρας φ: A → EndF(V)
  • μια αναπαράσταση μιας Lie άλγεβρας a σε ένα διανυσματικό χώρο V είναι ένας ομομορφισμός Lie άλγεβρας φ: agl(V,F).

ΟρολογίαEdit

Ο διανυσματικός χώρος V ονομάζεται χώρος αναπαράστασης της φ και η διάστασή του (αν είναι πεπερασμένη) ονομάζεται διάσταση της αναπαράστασης (κάποιες φορές ονομάζεται και βαθμός). Επίσης, συνήθως αναφερόμαστε στον V μόνο του ως αναπαράσταση όταν ο ομομορφισμός φ είναι εννοούμενος από τα συμφραζόμενα, διαφορετικά ο συμβολισμός (V,φ) μπορεί να χρησιμοποιηθεί για να δηλώσουμε μια αναπαράσταση.

Όταν ο V είναι πεπερασμένης διάστασης n, μπορούμε να διαλέξουμε μια βάση για τον V για να ταυτοποιήσουμε τον V με τον Fn και ως εκ τούτου, να ανακτήσουμε μια αναπαράσταση πινάκων με στοιχεία από το σώμα F. Μια αποτελεσματική και πιστή αναπαράσταση είναι μια αναπαράσταση (V,φ) για την οποία ο ομομορφισμός φ είναι αμφιμονότιμος.

Ισαλλοίωτη Απεικόνιση και ΙσομορφισμοίEdit

Αν V και W είναι διανυσματικοί χώροι πάνω στο F, εφοδιασμένοι με τις αναπαραστάσεις φ και ψ μιας ομάδας G, τότε μια ισαλλοίωτη απεικόνιση από τον V στον W είναι μία γραμμική απεικόνιση α: VW τέτοια ώστε να ισχύει:

\alpha( g\cdot v ) = g \cdot \alpha(v)

για όλα τα g που ανήκουν στην G και τα v που ανήκουν στο V. Σε ό,τι αφορά στην φ: G → GL(V) και την ψ: G → GL(W), αυτό σημαίνει ότι:

\alpha\circ \phi(g) = \psi(g)\circ \alpha

για όλα τα g που ανήκουν στην G.

Οι Ισαλλοίωτες απεικονίσεις για αναπαραστάσεις μιας προσεταιριστικής ή Lie άλγεβρας ορίζονται παρόμοια. Αν η α είναι αντιστρέψιμη, τότε λέγεται ότι είναι ένας ισομορφισμός και στην περίπτωση αυτή ο V και ο W (ή, για μεγαλύτρη ακρίβεια, οι φ και ψ) είναι ισομορφικές αναπαραστάσεις.

Οι ισομορφικές αναπαραστάσεις είναι, για όλους τους πρακτικούς σκοπούς, "οι ίδιες": παρέχουν τις ίδιες πληροφορίες για την ομάδα ή την άλγεβρα όταν αναπαριστώνται. Η θεωρία Αναπαραστάσεων, επομένως, ψάχνει να ταξινομήσει τις αναπαραστάσεις "ανάλογα με τον ισομορφισμό".

Υποαναπαραστάσεις, πηλίκα, και ανάγωγες αναπαραστάσειςEdit

Αν (W,ψ) είναι μια αναπαράσταση (έστω) μιας ομάδας G, και V είναι ένας γραμμικός υπόχωρος του W ο οποίος διατηρείται με τη δράση της G με την έννοια ότι g · vV για όλα τα vV (Ο Serre καλεί αυτούς τους V σταθερούς κάτω από την G), τότε ο V ονομάζεται υποαναπαράσταση: ορίζοντας φ(g) να είναι το υπόλοιπο της ψ(g) από τον V, (V, φ) είναι η αναπαράσταση της G και η συμπερίληψη του V στον W είναι μια ισαλλοίωτη απεικόνιση. Ο χώρος πηλίκο W/V μπορεί επίσης να μετατραπεί σε μια αναπαράσταση της G.

Αν ο W έχει ακριβώς δύο υποαναπαραστάσεις, δηλαδή τον τετριμμένο υπόχωρο {0} και τον εαυτό του W, τότε η αναπαράσταση λέγεται ότι είναι ανάγωγη, ενώ εάν ο W έχει μια κανονική, μη τετριμμένη υποαναπαράσταση, η αναπαράσταση λέγεται ότι είναι αναγώγιμη. Ο ορισμός μιας ανάγωγης αναπαράστασης συνεπάγεται το Λήμμα Schur: μια ισαλλοίωτη απεικόνιση α: VW μεταξύ ανάγωγων αναπαραστάσεων είναι είτε μηδενική απεικόνιση είτε ένας ισομορφισμός, αφού ο πυρήνας και η εικόνα της είναι υποαναπαραστάσεις.

Συγκεκριμένα, όταν V = W, αυτό δείχνει ότι ισαλλοίωτοι ενδομορφισμοί του V σχηματίζουν μια προσεταιριστική, ακέραια άλγεβρα κάτω από το υποκείμενο σώμα F. Αν το F είναι αλγεβρικά κλειστό, οι μόνοι ισαλλοίωτοι ενδομορφισμοί μιας ανάγωγης αναπαράστασης είναι βαθμωτά πολλαπλάσια του ταυτοτικού στοιχείου.

Οι ανάγωγες αναπαραστάσεις είναι τα δομικά στοιχεία της θεωρίας αναπαραστάσεων: αν μία αναπαράσταση W δεν είναι ανάγωγη τότε φτιάχνεται από μία υποαναπαράσταση και ένα πηλίκο που είναι "απλούστερα" κατά κάποιον τρόπο, για παράδειγμα, εάν ο W είναι πεπερασμένης διάστασης, τότε και η υποαναπαράσταση και το πηλίκο έχουν μικρότερη διάσταση.

Ευθύ άθροισμα και αδιάσπαστες αναπαραστάσειςEdit

Εάν (V,φ) και (W,ψ) είναι αναπαραστάσεις (έστω) μιας ομάδας G, τότε το ευθύ άθροισμα των V και W είναι μια αναπαράσταση, με έναν κανονικό τρόπο, μέσω της εξίσωσης

g\cdot (v,w) = (g\cdot v, g\cdot w).

Το ευθύ άθροισμα των δύο αναπαραστάσεων δεν φέρει περισσότερες πληροφορίες σχετικά με την ομάδα G απ’ ότι οι δύο διακριτές αναπαραστάσεις. Αν μία αναπαράσταση είναι το ευθύ άθροισμα δύο γνήσιων μη τετριμμένων υποαναπαραστάσεων, καλούνται διασπάσιμες. Διαφορετικά, καλούνται αδιάσπαστες.

Σε ευνοϊκές συνθήκες, κάθε αναπαράσταση είναι ένα ευθύ άθροισμα ανάγωγων αναπαραστάσεων: τέτοιες αναπαραστάσεις λέγεται ότι είναι ημιαπλές. Σε αυτήν την περίπτωση, αρκεί να καταλάβει κανείς μόνο τις ανάγωγες αναπαραστάσεις. Σε άλλες περιπτώσεις, πρώτα πρέπει να καταλάβει πώς οι διασπάσιμες αναπαραστάσεις μπορούν να δημιουργηθούν από ανάγωγες αναπαραστάσεις ως προεκτάσεις ενός πηλίκου από υποαναπαράσταση.

Κλάδοι και ΘέματαEdit

Η θεωρία αναπαραστάσεων είναι αξιοσημείωτη για τον αριθμό των κλάδων που διαθέτει, καθώς και την ποικιλομορφία των προσεγγίσεων για τη μελέτη αναπαραστάσεων αλγεβρικών ομάδων. Παρά το γεγονός ότι, όλες οι θεωρίες έχουν από κοινού τις βασικές έννοιες που συζητήθηκαν ήδη, διαφέρουν σημαντικά στην λεπτομέρεια. Οι διαφορές είναι τουλάχιστον 3-πτυχες:

  1. Η θεωρία αναπαράστασης εξαρτάται από το είδος του αλγεβρικού αντικειμένου που αναπαραστάται. Υπάρχουν πολλές διαφορετικές τάξεις ομάδων, συνειρμικές άλγεβρες και άλγεβρες "Lie" και οι θεωρίες αναπαράστασής τους,οι οποίες είναι, όλες, ξεχωριστές.
  2. Η θεωρία αναπαράστασης εξαρτάται από τη φύση του διανυσματικού χώρου κατά την οποία το αλγεβρικό αντικείμενο αναπαριστάται. Η πιο σημαντική διάκριση είναι μεταξύ των πεπερασμένης-διάστασης αναπαραστάσεων και των άπειρης-διάστασης αναπαραστάσεων. Στην περίπτωση των άπειρης-διάστασης αναπαραστάσεων,οι πρόσθετες δομές είναι σημαντικές (π.χ. κατά πόσον ή όχι ο χώρος είναι ένας Χώρος Hilbert, χώρος Banach, κλπ). Πρόσθετες αλγεβρικές δομές μπορούν επίσης να επιβληθούν στην περίπτωση της πεπερασμένης διάστασης.
  3. Η θεωρία αναπαράστασης εξαρτάται από τον τύπο του σώματος πάνω στο οποίο ο διανυσματικός χώρος ορίζεται. Η πιο σημαντική περίπτωση είναι το σώμα των μιγαδικών αριθμών. Οι άλλες σημαντικές υποθέσεις είναι το σώμα των πραγματικών αριθμών, πεπερασμένα σώματα και το σώμα των p-adic αριθμών. Πρόσθετες δυσκολίες προκύπτουν για τα σώματα των θετικών χαρακτηριστικών και για τα σώματα που δεν είναι αλγεβρικά κλειστά.

Πεπερασμένες ΟμάδεςEdit

Οι αναπαραστάσεις ομάδων είναι ένα πολύ σημαντικό εργαλείο για τη μελέτη των πεπερασμένων ομάδων. Μπορούν επίσης να προκύψουν κατά την εφαρμογή της θεωρίας πεπερασμένων ομάδων στην γεωμετρία και κρυσταλλογραφία. Οι αναπαραστάσεις των πεπερασμένων ομάδων παρουσιάζουν πολλά από τα χαρακτηριστικά της γενικής θεωρίας και δείχνουν το δρόμο σε άλλους κλάδους και θέματα στη θεωρία αναπαραστάσεων.

Πάνω από ένα πεδίο του χαρακτηριστικού μηδενός, η θεωρία αναπαράστασης μιας πεπερασμένης ομάδα G έχει μια σειρά από βολικές ιδιότητες. Πρώτον, οι αναπαραστάσεις του G είναι ημι-απλές (εντελώς αναγώγιμες). Αυτό είναι συνέπεια του θεωρήματος του Maschke, η οποία ορίζει ότι κάθε υπο-αναπαράσταση V μιας G-αναπαράστασης W έχει ενα G-αναλλοίωτο συμπλήρωμα. Μία από τις αποδείξεις είναι να επιλέξουμε οποιοδήποτε προβολή π από το W στο V και να αντικατασταθεί με το μέσο όρο πG του που ορίζονται από:

 \pi_G(x) = \frac1{|G|}\sum_{g\in G} g\cdot \pi(g^{-1}\cdot x)..
Ο πυρήνας του πG είναι το απαιτούμενο συμπλήρωμα.

Οι πεπερασμένης διάστασης G-αναπαραστάσεις μπορούν να γίνουν κατανοητοί με τη χρήση της θεωρίας χαρακτήρα: ο χαρακτήρας μιας φ αναπαράστασης: GGL (V) είναι η συνάρτηση χφ: GF που ορίζεται από:
\chi_{\varphi}(g) = \mathrm{Tr}(\varphi(g))\,

όπου \mathrm{Tr} είναι το ίχνος. Μια αμείωτη εκπροσώπηση του G είναι εντελώς καθορισμένη από το χαρακτήρα της.

Το θεώρημα Maschke είναι γενικότερα για τα σώματα των θετικών χαρακτηριστικών ρ, όπως τα πεπερασμένα σώματα, εφ 'όσον ο πρώτος p είναι σχετικά πρώτος με τη σειρά του G. Όταν p και | G | έχoυν ένα κοινό παράγοντα, υπάρχουν G-αναπαραστάσεις που δεν είναι ημι-απλές, οι οποίες μελετώνται σε υπο-κλάδο που ονομάζεται "modular" θεωρία αναπαραστάσεων.

Τεχνικές κατά μέσο όρο δείχνουν επίσης ότι αν F είναι οι πραγματικοί ή οι μιγαδικοί αριθμοί, τότε κάθε G-αναπαράσταση διατηρεί ένα εσωτερικό γινόμενο \langle\cdot,\cdot\rangle στον V, με την έννοια ότι:

\langle g\cdot v,g\cdot w\rangle = \langle v,w\rangle για όλα τα g \in G και v, w \in W. Έτσι, κάθε G-αναπαράσταση είναι ενιαία.

Οι ενιαίες αναπαραστάσεις είναι αυτόματα ημι-απλές, δεδομένου ότι το αποτέλεσμα του Maschke μπορεί να αποδειχθεί με τη λήψη ορθογωνίου συμπληρώματος μιας υπο-αναπαράστασης. Κατά τη μελέτη αναπαραστάσεων ομάδων που δεν είναι πεπερασμένες, οι ενιαίες αναπαραστάσεις παρέχουν μια καλή γενίκευση των πραγματικών και των αναπαραστάσεων μιας πεπερασμένης ομάδας.

Αποτελέσματα, όπως το Θεώρημα Maschke που βασίζονται σε μέσους όρους μπορούν να γενικευτούν σε πιο γενικές ομάδες, αντικαθιστώντας το μέσο όρο με ενιαίο, υπό την προϋπόθεση ότι η κατάλληλη έννοια του ολοκληρώματος μπορεί να οριστεί. Αυτό μπορεί να γίνει για συμπαγείς ομάδες ή τοπικά συμπαγείς ομάδες, χρησιμοποιώντας το μέτρο Haar και η προκύπτουσα θεωρία είναι γνωστή ως αφηρημένη αρμονική ανάλυση.

Πάνω από αυθαίρετα σώματα, μια άλλη κατηγορία των πεπερασμένων ομάδων που έχουν μια καλή θεωρία αναπαράστασης είναι οι πεπερασμένες ομάδες του τύπου "Lie". Σημαντικά παραδείγματα είναι γραμμικές αλγεβρικές ομάδες πάνω από πεπερασμένα σώματα. Η θεωρία αναπαράστασης των γραμμικών αλγεβρικών ομάδων και ομάδων "Lie" επεκτείνει αυτά τα παραδείγματα σε απείρων διαστάσεων ομάδες,με την τελευταία να συνδέεται στενά με αναπαραστάσεις άλγεβρας Lie. Η σημασία της θεωρίας χαρακτήρα για πεπερασμένες ομάδες έχει μια αναλογία στη θεωρία των βαρών για αναπαραστάσεις ομάδων "Lie" και αλγεβρών Lie.

Αναπαραστάσεις μιας πεπερασμένης ομάδας G επίσης συνδέονται άμεσα με αναπαραστάσεις άλγεβρας μέσω της αλγεβρικής ομάδας F [G], η οποία είναι ένας διανυσματικός χώρος πάνω από το F με τα στοιχεία της G ως βάση, εξοπλισμένη με την πράξη του πολλαπλασιασμού που ορίζεται από την πράξη της ομάδας, τη γραμμικότητα , και την απαίτηση ότι η πράξη της ομάδας και ο βαθμωτός πολλαπλασιασμός εναλλάσσονται.

Αναπαραστάσεις μέτρουEdit

Αναπαραστάσεις μέτρου μιας πεπερασμένης ομάδας G είναι αναπαραστάσεις σε ένα σώμα του οποίου η χαρακτηριστική δεν σχετικά πρώτη με το | G |, έτσι ώστε το θεώρημα του Maschke δεν ισχύει πλέον (γιατί το | G | δεν είναι αντιστρέψιμο στο F και έτσι δεν μπορεί κάποιος αριθμός να διαιρεθεί από αυτό). Παρ 'όλα αυτά, ο Richard Brauer επέκτεινε μεγάλο μέρος της θεωρίας χαρακτήρων σε αναπαραστάσεις μέτρου, και η θεωρία αυτή έπαιξε σημαντικό ρόλο στην ταχεία πρόοδο προς την κατάταξη των πεπερασμένων απλών ομάδων, ιδίως για τις απλές ομάδες των οποίων ο χαρακτηρισμός δεν ήταν δεκτικός σε αμιγώς ομάδο-θεωρητικές μεθόδους επειδή οι "Sylow 2" -υποομάδες τους ήταν "πολύ μικρές".

Καθώς και με εφαρμογές στη Ομαδοθεωρία, οι αναπαραστάσεις μέτρου προκύπτουν φυσικά σε άλλους κλάδους των Μαθηματικών, όπως Αλγεβρική Γεωμετρία, θεωρία κωδικοποίησης, Συνδυαστική και Αριθμοθεωρία.

Μοναδιαίες αναπαραστάσειςEdit

Μια μοναδιαία αναπαράσταση μιας ομάδας G είναι μια γραμμική απεικόνιση φ του G σε ένα πραγματικό ή (συνήθως) μιγαδικό χώρο Hilbert V τέτοια ώστε φ(g) είναι ένας ενιαίος τελεστής για κάθε g \in G. Τέτοιες αναπαραστάσεις έχουν εφαρμοστεί ευρέως στην Κβαντική Μηχανική από το 1920, χάρη κυρίως στην επιρροή του Hermann Weyl, και αυτό έχει εμπνεύσει την ανάπτυξη της θεωρίας, κυρίως μέσα από την ανάλυση των αναπαραστάσεων της ομάδας Poincaré από τον Eugene Wigner. Ένας από τους πρωτοπόρους στην κατασκευή μιας γενικής θεωρίας των μοναδιαίων αναπαραστάσεων (για οποιαδήποτε ομάδα G και όχι μόνο για τις συγκεκριμένες ομάδες που είναι χρήσιμες σε εφαρμογές) ήταν ο George Mackey, και μια μεγάλη θεωρία αναπτύχθηκε από τους Harish-Chandra και άλλους στη δεκαετία του 1950 και του 1960.

Ένας σημαντικός στόχος είναι να περιγράψει η "μοναδιαία δυϊκή", τo χώρο των ανάγωγων μοναδιαίων αναπαραστάσεων της G. Η θεωρία είναι πιο ανεπτυγμένη στην περίπτωση κατά την οποία το G είναι μια τοπολογική ομάδα τοπικά συμπαγής (Hausdorff) και οι αναπαραστάσεις είναι έντονα συνεχής.

Για τη G αβελιανή, η μοναδιαία δυϊκή είναι μόνο ο χώρος των χαρακτήρων, ενώ για τη G συμπαγής, το θεώρημα Peter-Weyl δείχνει ότι οι ανάγωγες μοναδιαίες αναπαραστάσεις είναι πεπερασμένης διάστασης και η μοναδιαία δυϊκή είναι διακριτή. Για παράδειγμα, αν η G είναι η κυκλική ομάδα S1, τότε οι χαρακτήρες δίδονται από ακεραίους, και η μοναδιαία δυϊκή είναι η Ζ.

Για G μη συμπαγή, το ερώτημα ποιες παραστάσεις είναι μοναδιαίες είναι λεπτό. Αν και οι ανάγωγες μοναδιαίες αναπαραστάσεις πρέπει να είναι «παραδεκτές» (όπως το πρότυπο των Harish-Chandra) και είναι εύκολο να ανιχνευθεί ποια παραδεκτή αναπαράσταση έχει μη εκφυλισμένη αναλλοίωτη γραμμικο-ημιγραμμική μορφή, είναι δύσκολο να καθοριστεί πότε αυτή η μορφή είναι θετικά ορισμένη. Μια αποτελεσματική περιγραφή της μοναδιαίας δυϊκής, ακόμη και για τους σχετικά καλά ορισμένες ομάδες, όπως οι πραγματικές αναγωγικές ομάδες "Lie", παραμένει ένα σημαντικό ανοικτό πρόβλημα στην θεωρία αναπαραστάσεων. Έχει λυθεί για πολλές συγκεκριμένες ομάδες, όπως η SL2(R)|SL(2,R) και η ομάδα Lorentz.

Αρμονική ΑνάλυσηEdit

Η δυαδικότητα μεταξύ της κυκλικής ομάδας S1 και των ακεραίων Z, ή πιο γενικά, μεταξύ μιας σπείρας Tn και μιας Zn είναι γνωστή στην ανάλυση ως η θεωρία των σειρών Fourier, και ο μετασχηματισμός Fourier παρόμοια εκφράζει το γεγονός ότι ο χώρος των χαρακτήρων σε έναν πραγματικό διανυσματικό χώρο είναι ο δυϊκός διανυσματικός χώρος. Έτσι, η ενιαία θεωρία αναπαραστάσεων και η αρμονική ανάλυση είναι στενά συσχετισμένες, και η αφηρημένη Αρμονική Ανάλυση εκμεταλλεύεται αυτή τη σχέση, αναπτύσσοντας τη Συναρτησιακή Ανάλυση σε τοπικά συμπαγείς τοπολογικές ομάδες και σχετικούς χώρους.

Ένας κύριος στόχος είναι να παρέχει μια γενική μορφή από το μετασχηματισμό Fourier και το θεώρημα Plancherel. Αυτό γίνεται κατασκευάζοντας μία απεικόνιση σε μοναδιαία δυϊκή και έναν ισομορφισμό μεταξύ της κανονικής παράστασης της G στο χώρο L2(G) από τετραγωνικές, ολοκληρώσιμες συναρτήσεις της G και της αναπαράστασή του στο χώρο των L2 συναρτήσεων στη μοναδιαία δυϊκή. Η δυϊκότητα του Pontrjagin και το θεώρημα του Peter–Weyl το κατάφεραν για αβελιανή και συμπαγή G αντίστοιχα. Μία άλλη προσέγγιση περιλαμβάνει όλες τις δυϊκές αναπαραστάσεις, και όχι μόνο τις ανάγωγες. Αυτές σχηματίζουν μια κατηγορία, και η δυϊκότητα των Tannaka–Krein παρέχει έναν τρόπο για να ανακτηθεί μια συμπαγής ομάδα από την κατηγορία από δυϊκές αναπαραστάσεις.

Αν η ομάδα δεν είναι ούτε αβελιανή ούτε συμπαγής, δεν είναι γνωστή κάποια γενική θεωρία ανάλογη αυτής του θεωρήματος Plancherel ή του μετασχηματισμού Fourier, παρ' όλο που ο Alexander Grothendieck προέκτεινε τη δυϊκότητα των Tannaka–Krein σε μία σχέση μεταξύ γραμμικών αλγεβρικών ομάδων και κατηγοριών του Tannaka.

Η αρμονική ανάλυση έχει επίσης επεκταθεί από τη συναρτησιακή ανάλυση σε μια ομάδα G σε συναρτήσεις σε ομογενείς χώρους για τη G. Η θεωρία είναι ιδιαίτερα καλά ανεπτυγμένη για συμμετρικούς χώρους και παρέχει μια θεωρία αυτομορφικών μορφών (αναφέρεται παρακάτω). ανάγωγες

Ομάδες "Lie"Edit

Μια ομάδα "Lie" είναι μια ομάδα η οποία είναι επίσης μια ομαλή πολλαπλότητα. Πολλές κλασσικές ομάδες μητρών στους πραγματικούς ή μιγαδικούς αριθμούς είναι ομάδες "Lie".

Πολλές από τις ομάδες που είναι σημαντικές στη Φυσική και τη Χημεία είναι ομάδες "Lie", και η θεωρία αναπαράστασής τους είναι ζωτικής σημασίας για την εφαρμογή της θεωρίας της ομάδας σε αυτούς τους τομείς.

Η θεωρία αναπαραστάσεων των ομάδων "Lie" μπορούν να αναπτυχθούν αρχικά από την εξέταση των συμπαγώ ομάδων, στο οποίο εφαρμόζονται τα αποτελέσματα της συμπαγούς θεωρίας αναπαραστάσεων. Αυτή η θεωρία μπορεί να επεκταθεί και σε πεπερασμένης διάστασης αναπαραστάσεις των ημι-απλών ομάδων "Lie" χρησιμοποιόντας το μοναδιαίο τέχνασμα του Weyl : κάθε ημι-απλή πραγματική ομάδα "Lie" G έχει μια μιγαδοποίηση, η οποία είναι μια μιγαδική ομάδα "Lie" Gc, και αυτή η μιγαδική ομάδα "Lie" έχει μέγιστη συμπαγή υποομάδα K. Οι πεπερασμένων διαστάσεων αναπαραστάσεις του G αντιστοιχούν σε εκείνες του Κ

Μια γενική ομάδα "Lie" είναι ένα ημιευθύ προϊόν μιας επιλύσιμης ομάδας "Lie" και μιας ημι-απλής ομάδας "Lie". Η ταξινόμηση των αναπαραστάσεων των επιλύσιμων ομάδων "Lie" είναι δυσεπίλυτη σε γενικές γραμμές, αλλά συχνά εύκολη σε συγκεκριμένες περιπτώσεις. Αναπαραστάσεις ημιευθέων προϊόντων μπορούν στη συνέχεια να αναλυθούν με τη βοήθεια των γενικών αποτελεσμάτων που ονομάζονται θεωρία Mackey, η οποία είναι μια γενίκευση των μεθόδων που χρησιμοποιούνται στην ταξινόμηση των αναπαραστάσεων της Ομάδας Poincare Wigner.

Άλγεβρες "Lie"Edit

Μια "Lie" άλγεβρα πάνω σε ένα σώμα F είναι διανυσματικός χώρος πάνω από το F εξοπλισμένο με πράξη διγραμμική, αντιμετρική και συμμετρική ονομάζεται βραχίονας Lie, και ικανοποιεί την ταυτότητα Jacobi. Άλγεβρες "Lie" προκύπτουν ως χώροι εφαπτόμενοι στις ομάδες "Lie" στο ουδέτερο στοιχείο, που οδηγεί στην ερμηνεία τους ως «απειροελάχιστες συμμετρίες». Μια σημαντική προσέγγιση για την θεωρία αναπαράστασης των ομάδων "Lie" είναι να μελετηθεί η αντίστοιχη θεωρία αναπαράστασης των αλγεβρών "Lie", αλλά οι αναπαραστάσεις των αλγεβρών "Lie" έχουν επίσης ένα εγγενές ενδιαφέρον.

Οι άλγεβρες "Lie, όπως και οι ομάδες "Lie", έχουν μια αποσύνθεση "Levi" σε ημιαπλά και επιλύσιμα μέρη, με την θεωρία αναπαράστασης, από τις επιλύσιμες άλγεβρες "Lie", να είναι δυσεπίλυτη σε γενικές γραμμές. Αντιθέτως, οι πεπερασμένων διαστάσεων αναπαραστάσεις των ημιαπλών αλγεβρών "Lie" είναι πλήρως κατανοητές, μετά από την εργασία του Elie Cartan. Μια αναπαράσταση μιας ημιαπλής άλγεβρας "Lie" g αναλύεται επιλέγοντας μια υποάλγεβρα Cartan, το οποίο είναι ουσιαστικά μια γενική μέγιστη υποάλγεβρα h της g κατά την οποία ο βραχίονας Lie είναι μηδέν.

Η αναπαράσταση του g μπορεί να αποσυντεθεί σε χώρους βάρους που είναι ο ιδιοχώρος για τη δράση της h και το απειροελάχιστο ανάλογο χαρακτήρων. Η δομή των ημιαπλών αλγεβρών "Lie" στη συνέχεια μειώνει την ανάλυση των αναπαραστάσεων για να αντιληφθεί εύκολα τη συνδυαστική από τα πιθανά βάρη που μπορούν να συμβούν.

Άλγεβρες "Lie" άπειρης διάστασηςEdit

Υπάρχουν πολλές κατηγορίες άπειρων διαστάσεων αλγεβρών "Lie" των οποίων οι αναπαραστάσεις έχουν μελετηθεί. Μεταξύ αυτών, μια σημαντική κατηγορία είναι οι άλγεβρες Kac-Moody. Πήραν το όνομά τους από τους Victor Kac και Robert Moody, που τις ανακάλυψαν ανεξάρτητα. Αυτές οι άλγεβρες αποτελούν μια γενίκευση της πεπερασμένης διάστασης ημιαπλής άλγεβρας "Lie", και μοιράζονται πολλές από τις συνδυαστικές ιδιότητες τους. Αυτό σημαίνει ότι έχουν μια κατηγορία αναπαραστάσεων που μπορεί να γίνει κατανοητή με τον ίδιο τρόπο όπως και οι αναπαραστάσεις των ημιαπλών αλγεβρών "Lie".

Οι ομοπαραλληλικές άλγεβρες "Lie" είναι μια ειδική περίπτωση των KAC-Moody άλγεβρών, οι οποίες έχουν ιδιαίτερη σημασία στα μαθηματικά και στη Θεωρητική Φυσική, ειδικά στη σύμμορφη θεωρία πεδίου και τη θεωρία των ακριβώς επιλύσιμων μοντέλων.

Ο Kac ανακάλυψε μια κομψή απόδειξη ορισμένων συνδυαστικών ταυτοτήτων, ταυτότητες Macdonald, η οποία βασίζεται στην θεωρία αναπαραστάσεων των ομοπαραλληλικών αλγεβρών Kac-Moody.

Υπερ-άλγεβρες "Lie"Edit

Οι υπεράλγεβρες "Lie" είναι γενικεύσεις των αλγεβρών "Lie" στις οποίες ο διανυσματικός χώρος έχει μια Z2-ταξινόμηση, και συμμετρία και οι ταυτοτικές ιδιότητες Jacobi του βραχίονα "Lie" έχουν τροποποιηθεί από τα σήματα.Η θεωρία αναπαραστάσεων τους είναι παρόμοια με την θεωρία αναπαραστάσεων των αλγεβρών "Lie".

Γραμμικές αλγεβρικές ομάδεςEdit

Οι γραμμικές αλγεβρικές ομάδες (ή γενικότερα, ομοπαραλληλικά συστήματα ομάδων) είναι ανάλογα στην Αλγεβρική Γεωμετρία των ομάδων "Lie", αλλά σε γενικότερους τομείς από ότι απλά το R ή το C.

Πλέον συγκεκριμένα, πάνω από πεπερασμένα πεδία, δίνουν αφορμή για πεπερασμένες ομάδες τύπου "Lie". Αν και οι γραμμικές αλγεβρικές ομάδες έχουν μια ταξινόμηση η οποία είναι πολύ παρόμοια με εκείνη των ομάδων "Lie", η θεωρία αναπαραστάσεων τους είναι μάλλον διαφορετική (και πολύ λιγότερο καλά κατανοητές) και απαιτεί διαφορετικές τεχνικές, δεδομένου ότι η τοπολογία Zariski είναι σχετικά ασθενής, και τεχνικές από την ανάλυση δεν είναι πλέον διαθέσιμες.

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on FANDOM

Random Wiki