Fandom

Science Wiki

Μοναδιακή Μήτρα

63.277pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Μήτρα

Unitary Matrix


- Είδος Μήτρας.

ΕτυμολογίαEdit

Η ονομασία "μοναδιακή" σχετίζεται ετυμολογικά με την λέξη "μονάδα".

ΟρισμόςEdit

Μία μήτρα Â ονοµάζεται µοναδιακή αν η συζυγοανάστροφή (conjugate transpose) της ταυτίζεται µε την αντίστροφή της.

∆ηλαδή:

 :U^* U = UU^* = I \,

ΠεριγραφήEdit

In mathematics, a complex square matrix U is unitary if

U^* U = UU^* = I \,

where I is the identity matrix and U * is the conjugate transpose of U.

PropertiesEdit

For any unitary matrix U, the following hold:

  • Given two complex vectors x and y, multiplication by U preserves their inner product; that is,
\langle Ux, Uy \rangle = \langle x, y \rangle.
U = VDV^*\;
where V is unitary and D is diagonal and unitary.
  • |\det(U)|=1.
  • Its eigenspaces are orthogonal.
  • For any positive integer n, the set of all n by n unitary matrices with matrix multiplication forms a group, called the unitary group U(n).
  • Any square matrix with unit Euclidean norm is the average of two unitary matrices.[1]

Equivalent ConditionsEdit

If U is a square, complex matrix, then the following conditions are equivalent:

  1. U is unitary
  2. U * is unitary
  3. U is invertible, with U –1=U *.
  4. the columns of U form an orthonormal basis of \mathbb{C}^n with respect to the usual inner product
  5. the rows of U form an orthonormal basis of \mathbb{C}^n with respect to the usual inner product
  6. U is an isometry with respect to the usual norm
  7. U is a normal matrix with eigenvalues lying on the unit circle.

ΥποσημειώσειςEdit

  1. Li, Chi-Kwong; Poon, Edward. Additive Decomposition of Real Matrices. σελ. 1. 

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki