## FANDOM

64.302 Pages

Ομάδα SU(2)

- Μία Ομάδα.

- Ανήκει στην κατηγορία των μοναδιακών ομάδων.

## ΕτυμολογίαEdit

Η ονομασία "ομάδα" σχετίζεται ετυμολογικά με την λέξη '"ομού".

## ΕισαγωγήEdit

The Lie Algebras of SU(2) and SO(3) are isomorphic

This means that SU(2) and SO(3) are locally isomorphic. (This does not mean that SU(2) and SO(3) are isomorphic)

SU(2) is actually a double cover of SO(3) and there is a 2→1 surjective homeomorphism from SU(2) to SO(3)

Spin 1/2 particles, or fermions, need to be rotated 720º in order to come back to the same state.

Σημείωση: not every representation of SU(2) is a representation of SO(3). Η ομάδα SU(2) is the double cover of SO(3), and SU(2) is isomorphic to the coset SO(3)/Z2.

Elements of SU(2) are 2x2 complex matrices.

If to each matrix A ∈ SU(2) you assing the transformation

x ↦ A x of C 2 -

then you have the fundamental represantation of SU(2)

There is a very nice a natural group homomorphism, call it ρ ,

ρ: SU(2) → SO(3) .

It has the property ρ(A) = ρ(−A).

Matrices A and − A are mapped to the same element of SO(3) .

Thus the name "double cover".

Le groupe SU(2) est explicitement :

SU(2) is the following group,

$\mathrm{SU}(2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta & \overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \} ~,$

where the overline denotes complex conjugation.

Now, consider the following map,

\begin{align} \varphi \colon \mathbf{C}^2 &\to \operatorname{M}(2,\mathbf{C}) \\ \varphi(\alpha,\beta) &= \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta & \overline{\alpha}\end{pmatrix},\end{align}

where M(2, C) denotes the set of 2 by 2 complex matrices. By considering C2 diffeomorphic to R4 and M(2, C) diffeomorphic to R8, we can see that φ is an injective real linear map and hence an embedding. Now, considering the restriction of φ to the 3-sphere (since modulus is 1), denoted S3, we can see that this is an embedding of the 3-sphere onto a compact submanifold of M(2, C). However, it is also clear that φ(S3) = SU(2).

Therefore, as a manifold S3 is diffeomorphic to SU(2) and so S3 is a compact, connected Lie group.

The Lie algebra of SU(2) is

$\mathfrak{su} (2) = \left \{ \begin{pmatrix} ia & -\overline{z}\\ z & -ia \end{pmatrix}: \ a \in \mathbf{R}, z \in \mathbf{C} \right \} ~.$

It is easily verified that matrices of this form have trace zero and are antihermitian. The Lie algebra is then generated by the following matrices,

$u_1 = \begin{pmatrix} 0 & i\\ i & 0 \end{pmatrix} \qquad u_2 = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \qquad u_3 = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix} ~,$

which are easily seen to have the form of the general element specified above.

These satisfy u3u2 = −u2u3 = −u1 and u2u1 = −u1u2 = −u3. The commutator bracket is therefore specified by

$[u_3,u_1]=2u_2, \qquad [u_1,u_2] = 2u_3, \qquad [u_2,u_3] = 2u_1~.$

The above generators are related to the Pauli matrices by u1 = i σ1,u2 = −i σ2 and u3 = i σ3.

This representation is routinely used in quantum mechanics to represent the spin of fundamental particles such as electrons. They also serve as unit vectors for the description of our 3 spatial dimensions in loop quantum gravity.

The Lie algebra serves to work out the representations of U(2).

$G = \begin{bmatrix} z & x-iy \\ x+iy & -z \\ \end{bmatrix}$
$G_0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix}$
$G_1 = \begin{bmatrix} x \\ x \\ \end{bmatrix}$
$G_2 = \begin{bmatrix} -iy \\ iy \\ \end{bmatrix}$
$G_3 = \begin{bmatrix} z \\ -z \\ \end{bmatrix}$

## ΙστογραφίαEdit

Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)