FANDOM


Παρατηρήσιμον Μέγεθος

observable


Physics-Atom-01-goog

Φυσική
Φυσικοί Γης Νόμοι Φυσικής Νόμοι Φυσικής Θεωρίες Φυσικής Πειράματα Φυσικής Παράδοξα Φυσικής

Physical-Quantities-goog

Φυσικά Μεγέθη.

- Είναι ένα είδος Φυσικών Μεγεθών

ΕτυμολογίαEdit

Ikl Φυσικά Μεγέθη Ikl
Είδη
Α. Κινηματική


Β. Δυναμική


Γ. Κυματική
ύπαρξη «πρόκλησης»
Δ. Ελαστική Δυναμική

Η ονομασία "Μέγεθος" σχετίζεται ετυμολογικά με την λέξη "μεγέθυνση".

ΟρισμόςEdit

Παρατηρήσιμο μέγεθος ενός συστήματος είναι εκείνο το Φυσικό Μέγεθος που μπορεί να μετρηθεί καβαντικά (θέση, ορμή, ενέργεια, στροφορμή κλπ)

ΕισαγωγήEdit

In physics, particularly in quantum physics, a system observable is a measurable operator, or gauge, where the property of the system state can be determined by some sequence of physical operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value off some gauge. In systems governed by classical mechanics, any experimentally observable value can be shown to be given by a real-valued function on the set of all possible system states.

Physically meaningful observables must also satisfy transformation laws which relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations which preserve some mathematical property.

Φάσμα μεγέθουςEdit

Φάσμα (spectrum) ενός παρατηρήσιμου μεγέθους είναι το σύνολο των τιμών μίας μέτρησης για του μεγέθους σε δεδομένο Κβαντικό Σύστημα.

π.χ.

  • το φάσμα της θέσης (x) ελεύθερου σωματίου στο χώρο είναι απο –∞ έως + ∞ ενώ
  • το φάσμα της κινητικής ενέργειας (Ε) είναι απο 0 έως +∞.
  • η προβολή της στροφορμής κατα μήκος οποιουδήποτε άξονα έχει διακριτό φάσμα (δεν μπορεί να πάρει συνεχείς τιμές):

Quantum mechanics Edit

In quantum physics, the relation between system state and the value of an observable requires some basic linear algebra for its description. In the mathematical formulation of quantum mechanics, states are given by non-zero vectors in a Hilbert space V (where two vectors are considered to specify the same state if, and only if, they are scalar multiples of each other) and observables are given by self-adjoint operators on V. However, as indicated below, not every self-adjoint operator corresponds to a physically meaningful observable. For the case of a system of particles, the space V consists of functions called wave functions or state vectors.

In the case of transformation laws in quantum mechanics, the requisite automorphisms are unitary (or antiunitary) linear transformations of the Hilbert space V. Under Galilean relativity or special relativity, the mathematics of frames of reference is particularly simple, and in fact restricts considerably the set of physically meaningful observables.

In quantum mechanics, measurement of observables exhibits some seemingly unintuitive properties. Specifically, if a system is in a state described by a vector in a Hilbert space, the measurement process affects the state in a non-deterministic, but statistically predictable way. In particular, after a measurement is applied, the state description by a single vector may be destroyed, being replaced by a statistical ensemble. The irreversible nature of measurement operations in quantum physics is sometimes referred to as the measurement problem and is described mathematically by quantum operations. By the structure of quantum operations, this description is mathematically equivalent to that offered by relative state interpretation where the original system is regarded as a subsystem of a larger system and the state of the original system is given by the partial trace of the state of the larger system.

In quantum mechanics each dynamical variable (e.g. position, translational momentum, orbital angular momentum, spin, total angular momentum, energy, etc.) is associated with a Hermitian operator that acts on the state of the quantum system and whose eigenvalues correspond to the possible values of the dynamical variable. For example, suppose |a\rangle is an eigenket (eigenvector) of the observable \mathbf{A}, with eigenvalue a, and exists in a d-dimensional Hilbert space. Then

\mathbf{A}|a\rangle = a |a\rangle.

This eigenket equation says that if a measurement of the observable \scriptstyle \mathbf{A} is made while the system of interest is in the state \scriptstyle |a\rangle, then the observed value of that particular measurement must return the eigenvalue a with certainty. However, if the system of interest is in the general state \scriptstyle |\phi\rangle\in\mathcal{H}, then the eigenvalue a is returned with probability \scriptstyle |\langle a|\phi\rangle|^2 (Born rule). One must note that the above definition is somewhat dependent upon our convention of choosing real numbers to represent real physical quantities. Indeed, just because dynamical variables are "real" and not "unreal" in the metaphysical sense does not mean that they must correspond to real numbers in the mathematical sense.

To be more precise, the dynamical variable/observable is a (not necessarily bounded) Hermitian operator in a Hilbert space and thus is represented by a Hermitian matrix if the space is finite-dimensional. In an infinite-dimensional Hilbert space, the observable is represented by a Symmetric operator, which may not be defined everywhere (i.e. its domain is not the whole space - there exist some states that are not in the domain of the operator). The reason for such a change is that in an infinite-dimensional Hilbert space, the operator becomes unbounded, which means that it no longer has a largest eigenvalue. This is not the case in a finite-dimensional Hilbert space, where every operator is bounded - it has a largest eigenvalue. For example, if we consider the position of a point particle moving along a line, this particle's position variable can take on any number on the real-line, which is uncountably infinite. Since the eigenvalue of an observable represents a real physical quantity for that particular dynamical variable, then we must conclude that there is no largest eigenvalue for the position observable in this uncountably infinite-dimensional Hilbert space, since the field we're working over consists of the real-line. Nonetheless, whether we are working in an infinite-dimensional or finite-dimensional Hilbert space, the role of an observable in quantum mechanics is to assign real numbers to outcomes of particular measurements; this means that only certain measurements can determine the value of an observable for some state of a quantum system. In classical mechanics, any measurement can be made to determine the value of an observable.

Incompatibility of observables in quantum mechanicsEdit

A crucial difference between classical quantities and quantum mechanical observables is that the latter may not be simultaneously measurable. This is mathematically expressed by non-commutativity of the corresponding operators, to the effect that

\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A} \neq \mathbf{0}.

This inequality expresses a dependence of measurement results on the order in which measurements of observables \scriptstyle \mathbf{A} and \scriptstyle \mathbf{B} are performed. Observables corresponding to non-commutative operators are called incompatible.

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

Βιβλιογραφία Edit

  • S. Auyang, How is Quantum Field Theory Possible, Oxford University Press, 1995.
  • G. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, 1963.
  • V. Varadarajan, The Geometry of Quantum Mechanics vols 1 and 2, Springer-Verlag 1985.
  • Leslie E. Ballentine, "Quantum Mechanics: A Modern Development", World Scientific, 1998
  • R. Blume-Kohout, "Lecture 14: L^2(\reals) and Hilbert space. Wavefunctions, unbounded operators, and rigged Hilbert space.", www.am473.ca, 10/26/08
  • Hermann Weyl, "Quantum Physics and Causality", Appendix C in "Philosophy of Mathematics and Natural Science", Princeton University Press, 1949.

ΙστογραφίαEdit


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.