Fandom

Science Wiki

Ρητός Αριθμός

63.284pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Ρητός Αριθμός

Number


Numbers-03-goog.jpg

Διακριτά Μαθηματικά
Αριθμητική
Αριθμοθεωρία
Αριθμός
Μαθηματική Πράξη
Τελεστής

Οι "Ρητοί" αποτελούν ένα είδος αριθμών.

ΕτυμολογίαEdit

Ikl.jpg Αριθμοί Ikl.jpg
Α. Αριθμοσύνολα
Number
Number
  • Ρητός Αριθμός
Number
Number
Number

Number
Number
Number

Number
Number

Number
Number

---

Number
Number
Β. Ειδικοί Αριθμοί
Number
Number
Number

Number
Number
Γ. Άλλοι Αριθμοί
Number
Number

Number
Number
Number

Number
Number
Number

Number
Number
Number
Number
Δ. Ψηφία
Number
Number
Number
Number
Number
Number
Number
Number
Number

Number
Number
Number
Number


Η ονομασία " Ρητός" σχετίζεται ετυμολογικά με την λέξη "ρήση ".

ΕισαγωγήEdit

Το σύνολο των ρητών αριθμών είναι το σύνολο των αριθμών που μπορούν να γραφούν σε μορφή κλάσματος με ακέραιους όρους και παρονομαστή διάφορο του μηδενός.

Συμβολίζεται με \mathbb{Q}. Το σύνολο των ρητών περιγράφεται από το σύνολο:

\left\{\frac{\mu}{\nu} : \mu \in \mathbb{Z}, \nu \in \mathbb{Z}, n \ne 0 \right\}

και ισοδύναμα από το:

\left\{\frac{\mu}{\nu} : \mu \in \mathbb{Z}, \nu \in \mathbb{N} \right\}

Το σύνολο των ρητών αριθμών αποτελεί ένα διατεταγμένο σώμα. Είναι το μικρότερο σώμα με χαρακτηριστική 0 και για το λόγο αυτό είναι "πρώτο σώμα".

Όλοι οι ρητοί αριθμοί μπορούν να γραφούν με άπειρους διαφορετικούς τρόπους ως πηλίκα δύο ακεραίων μ/ν όπου το ν δεν είναι ίσο με μηδέν. Αποδεικνύεται ότι υπάρχει μοναδικός τρόπος γραφής κάθε ρητού στην μορφή μ/ν με ν φυσικό, όπου ο Μέγιστος Κοινός Διαιρέτης, μκδ(μ, ν) των μ και ν είναι η μονάδα η οποία είναι και η απλούστερη μορφή του.

Η δεκαδική αναπαράσταση κάθε ρητού αριθμού είναι πάντα περιοδική.

Το σύνολο των ρητών είναι γνήσιο υποσύνολο αυτού των πραγματικών αριθμών, υπάρχουν δηλαδή πραγματικοί αριθμοί που δεν είναι ρητοί. Οι αριθμοί αυτοί ονομάζονται άρρητοι.

Επιπλέον το σύνολο των ακεραίων και κατά συνέπεια και το σύνολο των φυσικών, είναι υποσύνολο αυτού των ρητών αφού κάθε ακέραιος α γράφεται στη μορφή α/1 που είναι ρητός.

ΑριθμητικήEdit

Δύο ρητοί αριθμοί \frac{\alpha}{\beta} και \frac{\gamma}{\delta} καλούνται ίσοι δηλ. \frac{\alpha}{\beta} = \frac{\gamma}{\delta} αν και μόνο αν \alpha\delta=  \beta\gamma

Γενικά οι ρητοί αριθμοί όπως και οι ακεραίοι ικανοποιούν:

Η πρόσθεση δύο ρητών ορίζεται ως ακολούθως:

\frac{\alpha}{\beta} + \frac{\gamma}{\delta} = \frac{\alpha\delta + \beta\gamma}{\beta\delta}

Ο πολλαπλασιασμός δύο ρητών ορίζεται ως ακολούθως:

\frac{\alpha}{\beta} \cdot \frac{\gamma}{\delta} = \frac{\alpha\gamma}{\beta\delta}

ΙδιότητεςEdit

  • Το σύνολο των ρητών αριθμών είναι πυκνό στο σύνολο των πραγματικών. Με αυτό εννοούμε ότι μεταξύ δύο οποιονδήποτε πραγματικών μπορεί να ανευρεθεί πάντοτε ένας ρητός και κατά συνέπεια μεταξύ δύο πραγματικών αριθμών μπορούν να ανευρεθούν άπειροι σε πλήθος ρητοί αριθμοί.

Επίσης είναι εύκολο να αποδείξει κανείς ότι και μεταξύ δύο οποιονδήποτε ρητών αριθμός μπορεί να ανευρεθεί τουλάχιστον ένας άλλος ρητός αριθμός και κατά συνέπεια άπειροι σε πλήθος ρητοί.

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki