Fandom

Science Wiki

Συνεχής Μετασχηματισμός

63.284pages on
this wiki
Add New Page
Talk1 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Συνεχής Μετασχηματισμός

Continuous Transformation


Transformation-01-goog.png

Μετασχηματισμός Μετασχηματισμοί
Σημειακός Μετασχηματισμός Συνεχής Μετασχηματισμός Διακριτός Μετασχηματισμός
Χρονική Αναστροφή Χωρική Αναστροφή Χρονική Μεταφορά Χωρική Μεταφορά Χρονική Στροφή Χωρική Στροφή
Αβελιανός Μετασχηματισμός Αναβελιανός Μετασχηματισμός Γαλιλαϊκός Μετασχηματισμός Μετασχηματισμός Lorentz Μετασχηματισμός Poincare

Transformations-Passive-Active-01-goog.jpg

Μετασχηματισμός Ενεργητικός Μετασχηματισμός Παθητικός Μετασχηματισμός Μετασχηματισμός Στροφής

- Ένα είδος Μετασχηματιστών.

ΕτυμολογίαEdit

Το όνομα "Συνεχής" σχετίζεται ετυμολογικά με την λέξη "συνέχεια".

ΠεριγραφήEdit

A continuous transformation, also called a topological transformation or homeomorphism, is a one-to-one correspondence between the points of one figure and the points of another figure such that points that are arbitrarily close on one figure are transformed into points that are also arbitrarily close on the other figure.

Figures that are related in this way are said to be topologically equivalent.

If a figure is transformed into an equivalent figure by bending, stretching, etc., the change is a special type of topological transformation called a continuous deformation.

Two figures (e.g, certain types of knots) may be topologically equivalent, however, without being changeable into one another by a continuous deformation.

It is intuitively evident that all simple closed curves in the plane and all polygons are topologically equivalent to a circle;

similarly, all closed cylinders, cones, convex polyhedra, and other simple closed surfaces are equivalent to a sphere.

On the other hand, a closed surface such as a torus (doughnut) is not equivalent to a sphere, since no amount of bending or stretching will make it into a sphere, nor is a surface with a boundary equivalent to a sphere, e.g., a cylinder with an open top, which may be stretched into a disk (a circle plus its interior).

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Also on Fandom

Random Wiki