## FANDOM

64.295 Pages

Υπερεπιφάνεια

- Ένα Γεωμετρικό Σχήμα.

## ΕτυμολογίαEdit

Το όνομα "Υπερεπιφάνεια" σχετίζεται ετυμολογικά με την λέξη "Επιφάνεια".

## ΕισαγωγήEdit

In geometry, a hypersurface is a generalization of the concept of hyperplane.

Suppose an enveloping manifold M has n dimensions; then any submanifold of M of n − 1 dimensions is a hypersurface.

Equivalently, the codimension of a hypersurface is one.

For example, the n-sphere in Rn + 1 is called a hypersphere.

Hypersurfaces occur frequently in multivariable calculus as level sets.

In Rn, every closed hypersurface is orientable.[1] Every connected compact hypersurface is a level set, .[2] and separates Rn in two connected components, which is related to the Jordan-Brouwer separation theorem.

In algebraic geometry, a hypersurface in projective space of dimension n is an algebraic set (algebraic variety) that is purely of dimension n − 1. It is then defined by a single equation f(x1,x2,...,xn) = 0, a homogeneous polynomial in the homogeneous coordinates.

Thus, it generalizes those algebraic curves f(x1,x2) = 0 (dimension one), and those algebraic surfaces f(x1,x2,x3) = 0 (dimension two), when they are defined by homogeneous polynomials.

A hypersurface may have singularities, so not a submanifold in the strict sense.

"Primal" is an old term for an irreducible hypersurface.

## ΥποσημειώσειςEdit

1. Hans Samelson, "Orientability of hypersurfaces in Rn", Proceedings of the American Mathematical Society, Vol. 22, No. 1 (Jul., 1969), pp. 301-302.
2. Elon L. Lima, "The Jordan-Brouwer separation theorem for smooth hypersurfaces", The American Mathematical Monthly, Vol. 95, No. 1 (Jan., 1988), pp. 39-42.

## ΙστογραφίαEdit

Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Επίσης,
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)