Science Wiki
Advertisement

Σύμβολον Levi-Civita

Levi-Civita symbol


Symbols-Levi-Civita-02-goog

Σύμβολο Levi-Civita

Symbols-Levi-Civita-01-goog

Σύμβολο Levi-Civita

Symbols-Levi-Civita-03-goog

Σύμβολο Levi-Civita

- Ένας ψευδο-τανυστής.

Ετυμολογία[]

Η ονομασία "Σύμβολο Levi-Civita" σχετίζεται ετυμολογικά με το όνομα του Ιταλού μαθηματικού και φυσικού Levi-Civita.

Εισαγωγή[]

The Levi-Civita symbol, also called the permutation symbol or antisymmetric symbol, is a mathematical symbol used in particular in tensor calculus.

Ορισμός[]

Σε τρείς διαστάσεις,το Levi-Civita symbol ορίζεται ως εξής:

i.e. it is 1 if (i, j, k) is an even permutation of (1,2,3), −1 if it is an odd permutation, and 0 if any index is repeated.

For example, in linear algebra, the determinant of a 3×3 matrix A can be written

(and similarly for a square matrix of general size, see below)

και το cross product δύο vectors μπορεί να γραφεί ως ορίζουσα:

or more simply:

According to the Einstein notation, the summation symbol may be omitted.

The tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called the permutation tensor. It is actually a pseudotensor because under an orthogonal transformation of jacobian determinant −1 (i.e., a rotation composed with a reflection), it acquires a minus sign. Because the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector.

Note that under a general coordinate change, the components of the permutation tensor get multiplied by the jacobian of the transformation matrix. This implies that in coordinate frames different from the one in which the tensor was defined, its components can differ from those of the Levi-Civita symbol by an overall factor. If the frame is orthonormal, the factor will be ±1 depending on whether the orientation of the frame is the same or not.

Σχέση με το δέλτα Kronecker[]

The Levi-Civita symbol is related to the Kronecker delta. In three dimensions, the relationship is given by the following equations:

("contracted epsilon identity")

(In Einstein notation, the duplication of the i index implies the sum on i. The previous is then noted: )

Γενίκευση σε n διαστάσεις[]

The Levi-Civita symbol can be generalized to higher dimensions:

Thus, it is the sign of the permutation in the case of a permutation, and zero otherwise.

Furthermore, for any n the property

follows from the facts that (a) every permutation is either even or odd, (b) (+1)2 = (-1)2 = 1, and (c) the permutations of any n-element set number exactly n!.

In index-free tensor notation, the Levi-Civita symbol is replaced by the concept of the Hodge dual.
In general dimensions one can write the product of two Levi-Civita symbols as:

.

Now we can contract indices. This will add a factor of to the determinant and we need to omit the relevant Kronecker delta.

Ιδιότητες[]

(in these examples, superscripts should be considered equivalent with subscripts)

1. When , we have for all in ,

, (1)
, (2)
. (3)

2. When , we have for all in

, (4)
, (5)
. (6)

Αποδείξεις[]

For equation 1, both sides are antisymmetric with respect of and . We therefore only need to consider the case and . By substitution, we see that the equation holds for , i.e., for and . (Both sides are then one). Since the equation is antisymmetric in and , any set of values for these can be reduced to the above case (which holds). The equation thus holds for all values of and . Using equation 1, we have for equation 2

.

Here we used the Einstein summation convention with going from to . Equation 3 follows similarly from equation 2. To establish equation 4, let us first observe that both sides vanish when . Indeed, if , then one can not choose and such that both permutation symbols on the left are nonzero. Then, with fixed, there are only two ways to choose and from the remaining two indices. For any such indices, we have (no summation), and the result follows. Property (5) follows since and for any distinct indices in , we have (no summation).

Παραδείγματα[]

1. The determinant of an matrix can be written as

where each should be summed over

Equivalently, it may be written as

where now each and each should be summed over .

2. If and are vectors in (represented in some right hand oriented orthonormal basis), then the th component of their cross product equals

For instance, the first component of is . From the above expression for the cross product, it is clear that . Further, if is a vector like and , then the triple scalar product equals

From this expression, it can be seen that the triple scalar product is antisymmetric when exchanging any adjacent arguments. For example, .

3. Suppose is a vector field defined on some open set of with Cartesian coordinates . Then the th component of the curl of equals

Notation[]

A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, for an n x n matrix, M,

and for a rank 3 tensor T,

Υποσημειώσεις[]

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

  • Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, (1970) W.H. Freeman, New York; ISBN 0-7167-0344-0. (See section 3.5 for a review of tensors in general relativity).


Ιστογραφία[]


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


[[Category: ]]

Advertisement